Tunable topologically nontrivial states in newly discovered graphyne allotropes: from Dirac nodal grid to Dirac nodal loop.

Nanotechnology

Hunan Key Laboratory for Micro-Nano Energy Materials and Device, Xiangtan University, Xiangtan 411105, Hunan, People's Republic of China.

Published: September 2021

By means of quotient-graph associated crystal prediction method, a new graphyne allotrope with unique Dirac nodal grid state is reported in this work. It is named as 191-E24Y24-1 according to its hexagonal lattice (with P6/mmm symmetry, No. 191) containing 24 sp-hybridized carbon atoms and 24 sp-hybridized ones. The first-principles results show that the total energy of 191-E24Y24-1 is more favorable than that of recent synthesizedβ-graphdiyne and carbon ene-yne. It is also demonstrated to be dynamically, thermally, and mechanically stable. Interestingly, the 191-E24Y24-1 harbors intrinsic semimetal features showing intriguing hexagonal Dirac nodal grid state in the reciprocal space. Such unique electronic state is stable against small external tensile strains, and it is tunable under compression strains which will transform to new triangle Dirac nodal grid state. Moreover, a new metastable graphyne allotrope named 191-E12Y36-4 with Dirac nodal loop state is also observed in the process of stretching 191-E24Y24-1 with large tensile strains. The results presented in this work reveal two novel graphyne allotropes with exotic electronic properties. These discoveries are not only physical interesting, but also provide potential material candidates for carbon-based high performance electronic nanodevices.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6528/ac1cbeDOI Listing

Publication Analysis

Top Keywords

dirac nodal
24
nodal grid
16
grid state
12
graphyne allotropes
8
nodal loop
8
graphyne allotrope
8
tensile strains
8
dirac
6
nodal
6
state
5

Similar Publications

The fundamental characteristics of collective interactions in topological band structures can be revealed by the exploration of charge screening in topological materials. In particular, distinct anisotropic screening behaviors are predicted to occur in Dirac nodal line semimetals (DNLSMs) due to their peculiar anisotropic low-energy dispersion. Despite the recent extensive theoretical research, experimental observations of exotic charge screening in DNLSMs remain elusive, which is partly attributed to the coexisting trivial bands near the Fermi energy.

View Article and Find Full Text PDF

Charge-carrier compensation in topological semimetals amplifies the Nernst signal and simultaneously degrades the Seebeck coefficient. In this study, we report the simultaneous achievement of both a large Nernst signal and an unsaturating magneto-Seebeck coefficient in a topological nodal-line semimetal TaAs single crystal. The unique dual-high transverse and longitudinal thermopowers are attributed to multipocket synergy effects: the combination of a strong phonon-drag effect and the two overlapping highly dispersive conduction and valence bands with electron-hole compensation and high mobility, promising a large Nernst effect; the third Dirac band causes a large magneto-Seebeck effect.

View Article and Find Full Text PDF

Topological semimetals have recently garnered widespread interest in the quantum materials research community due to their symmetry-protected surface states with dissipationless transport which have potential applications in next-generation low-power electronic devices. One such material, [Formula: see text], exhibits Dirac nodal arcs and although the topological properties of single crystals have been investigated, there have been no reports in crystalline thin film geometry. We examined the growth of [Formula: see text] heterostructures on a range of single crystals by optimizing the electron beam evaporation of Pt and Sn and studied the effect of vacuum thermal annealing on phase and crystallinity.

View Article and Find Full Text PDF

Correlated topological flat bands in rhombohedral graphite.

Proc Natl Acad Sci U S A

October 2024

State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, People's Republic of China.

Flat bands and nontrivial topological physics are two important topics of condensed matter physics. With a unique stacking configuration analogous to the Su-Schrieffer-Heeger model, rhombohedral graphite (RG) is a potential candidate for realizing both flat bands and nontrivial topological physics. Here, we report experimental evidence of topological flat bands (TFBs) on the surface of bulk RG, which are topologically protected by bulk helical Dirac nodal lines via the bulk-boundary correspondence.

View Article and Find Full Text PDF

Quantum Geometry Induced Nonlinear Transport in Altermagnets.

Phys Rev Lett

September 2024

Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794, USA.

Article Synopsis
  • * The study differentiates contributions to this response, highlighting that longitudinal responses mainly arise from quantum metric quadrupole (QMQ), while transverse responses involve both QMQ and Berry curvature quadrupole (BCQ), with the Hall response for d-wave altermagnets being primarily influenced by BCQ.
  • * Additionally, the results indicate that crystalline anisotropy and spin-orbit coupling (SOC) significantly affect the response, with SOC leading to sharper peaks in the response and changes
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!