Synthetic amorphous silica (SAS) consists of agglomerates and aggregates of primary particles in the nanorange (<100 nm) and it is the E551 authorized food additive. The potential risks for human health associated to dietary exposure to SAS are not completely assessed; in particular, data on male and female reproductive systems are lacking. A 90-day oral toxicity study with pyrogenic SAS nanomaterial NM-203 was carried out on the basis of the OECD test guideline 408 in the frame of the NANoREG project. Adult Sprague-Dawley rats of both sexes were orally treated for 90 days with 0, 2, 5, 10, 20 and 50 mg SAS/kg bw per day. Dose levels were selected to be as close as possible to the expected human exposure to food additive E551. The present paper provides specific information on potential effects on male and female reproductive systems, through the evaluation of serum biomarkers, sperm count, histopathological analysis of testis, epididymis, ovary and uterus and real-time PCR on uterus; potential genotoxic alterations were evaluated by comet assay on testis, sperm and ovary. NM-203 did not induce histophatological and genotoxic effects in male reproductive system. In female rats, ovary is not target of NM-203 and only tissue-specific effects on uterus were recorded up to 10 mg/kg bw per day. To our best knowledge, this is the first study providing data on male and female reproductive systems after long-term, repeated oral exposure at dose levels close to dietary human exposure, which identifies a limited concern only for female reproductive health.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.reprotox.2021.08.001DOI Listing

Publication Analysis

Top Keywords

synthetic amorphous
8
amorphous silica
8
effects sub-chronic
4
sub-chronic oral
4
oral exposure
4
exposure pyrogenic
4
pyrogenic synthetic
4
silica nm-203
4
nm-203 male
4
male female
4

Similar Publications

Construction of crystalline/amorphous NiP/FePO/graphene heterostructure by microwave irradiation for efficient oxygen evolution.

J Colloid Interface Sci

December 2024

Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China; Shaanxi Key Laboratory for Carbon Neutral Technology, Northwest University, Xi'an 710127, China. Electronic address:

The rational design of highly efficient and cost-effective oxygen evolution reaction (OER) electrocatalysts is crucial for hydrogen production through electrocatalytic water splitting. Although the crystalline/amorphous heterostructure shows great potential in enhancing OER activity, its fabrication presents significantly greater challenges compared to that of crystalline/crystalline heterostructures. Herein, a microwave irradiation strategy is developed to construct reduced graphene oxide supported crystalline NiP/amorphous FePO heterostructure (NiP/FePO/RGO) as an efficient OER electrocatalyst.

View Article and Find Full Text PDF

Wood-Derived Hydrogels for Osteochondral Defect Repair.

ACS Nano

December 2024

Department of Biomaterials, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.

Repairing cartilage tissue is a serious global challenge. Herein, we focus on wood skeletal structures that are highly porous for cell penetration yet have load-bearing strength, and aim to synthesize wood-derived hydrogels with the ability to regenerate cartilage tissues. The hydrogels were synthesized by wood delignification and the subsequent intercalation of citric acid (CA), which is involved in tricarboxylic acid cycles and essential for energy production, and -acetylglucosamine (NAG), which is a cartilage glycosaminoglycan, among cellulose microfibrils.

View Article and Find Full Text PDF

Multi-heterointerface charge transfer in amine-functionalized cadmium sulfide-copper sulfide@titanium dioxide hollow spheres with rich oxygen vacancies for carbon dioxide photoreduction.

J Colloid Interface Sci

December 2024

Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, PR China. Electronic address:

Photocatalytically reducing CO into high-value-added chemical materials has surfaced as a viable strategy for harnessing solar energy and mitigating the greenhouse effect. But the inadequate separation of the photogenerated electron-hole pair remains a major obstacle to CO photoreduction. Constructing heterostructure photocatalysts with efficient interface charge transfer is a promising approach to solving the above problems.

View Article and Find Full Text PDF

Nanodots of Transition Metal Sulfides, Carbonates, and Oxides Obtained Through Spontaneous Co-Precipitation with Silica.

Nanomaterials (Basel)

December 2024

Material Science, BASF SE, RGA/BM-B007, Carl-Bosch-Str. 38, D-67056 Ludwigshafen, Germany.

The controlled formation and stabilization of nanoparticles is of fundamental relevance for materials science and key to many modern technologies. Common synthetic strategies to arrest growth at small sizes and prevent undesired particle agglomeration often rely on the use of organic additives and require non-aqueous media and/or high temperatures, all of which appear critical with respect to production costs, safety, and sustainability. In the present work, we demonstrate a simple one-pot process in water under ambient conditions that can produce particles of various transition metal carbonates and sulfides with sizes of only a few nanometers embedded in a silica shell, similar to particles derived from more elaborate synthesis routes, like the sol-gel process.

View Article and Find Full Text PDF

Facile Synthesis of Functional Polytrithiocarbonates from Multicomponent Tandem Polymerizations of CS, Thiols, and Alkyl Halides.

J Am Chem Soc

December 2024

Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China.

Polytrithiocarbonates have attracted significant attention recently because of their good thermal stability, light refractivity, crystallinity, and mechanical properties; however, the exploration of their structures and functionalities has been limited by their synthetic approaches. Multicomponent polymerization featuring simple monomers, mild conditions, diversified product structures, and high efficiency could provide a powerful and versatile tool to synthesize various polytrithiocarbonates from commercially available monomers. Herein, a robust and efficient multicomponent tandem polymerization (MCTP) of CS, dithiols, and alkyl halides was developed in DMF with KCO at room temperature in air to synthesize 12 polytrithiocarbonates with diversified and systematically tuned structures, high molecular weights (s up to 37900 g/mol), and high yields (up to 93%).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!