Since the rapid onset of the COVID-19 pandemic, its causative virus, Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), continues to spread and increase the number of fatalities. To expedite studies on understanding potential surface transmission of the virus and to aid environmental epidemiological investigations, we developed a rapid viability reverse transcriptase PCR (RV-RT-PCR) method that detects viable (infectious) SARS-CoV-2 from swab samples in <1 day compared to several days required by current gold-standard cell-culture-based methods. The method integrates cell-culture-based viral enrichment in a 96-well plate format with gene-specific RT-PCR-based analysis before and after sample incubation to determine the cycle threshold (C) difference (ΔC). An algorithm based on ΔC ≥ 6 representing ∼ 2-log or more increase in SARS-CoV-2 RNA following enrichment determines the presence of infectious virus. The RV-RT-PCR method with 2-hr viral infection and 9-hr post-infection incubation periods includes ultrafiltration to concentrate virions, resulting in detection of <50 SARS-CoV-2 virions in swab samples in 17 h (for a batch of 12 swabs), compared to days typically required by the cell-culture-based method. The SARS-CoV-2 RV-RT-PCR method may also be useful in clinical sample analysis and antiviral drug testing, and could serve as a model for developing rapid methods for other viruses of concern.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8349479 | PMC |
http://dx.doi.org/10.1016/j.jviromet.2021.114251 | DOI Listing |
Methods Mol Biol
January 2025
Department of Biomedical Engineering, University of North Texas, Denton, TX, USA.
Human liver organoids (HLOs) derived from pluripotent stem cells hold potential for disease modeling and high-throughput compound screening due to their architectural and functional resemblance to human liver tissues. However, reproducible, scale-up production of HLOs for high-throughput screening (HTS) presents challenges. These include the high costs of additives and growth factors required for cell differentiation, variability in organoid size and function from batch to batch, suboptimal maturity of HLOs compared to primary hepatocytes, and low assay throughput due to excessive manual processes and the absence of assay-ready plates with HLOs.
View Article and Find Full Text PDFBiotechnol Bioeng
January 2025
Bioprinting Laboratories Inc., Dallas, Texas, USA.
Recent advancements in three-dimensional (3D) cell culture technologies, such as cell spheroids, organoids, and 3D bioprinted tissue constructs, have significantly improved the physiological relevance of in vitro models. These models better mimic tissue structure and function, closely emulating in vivo characteristics and enhancing phenotypic analysis, critical for basic research and drug screening in personalized cancer therapy. Despite their potential, current 3D cell culture platforms face technical challenges, which include user-unfriendliness in long-term dynamic cell culture, incompatibility with rapid cell encapsulation in biomimetic hydrogels, and low throughput for compound screening.
View Article and Find Full Text PDFJ Physiol
January 2025
Department of Physiology and Pharmacology, University of Western Ontario, London, ON, Canada.
Here we characterize seven Cx30.3 gene variants (R22H, S26Y, P61R, C86S, E99K, T130M and M190L) clinically associated with the rare skin disorder erythrokeratodermia variabilis et progressiva (EKVP) in tissue-relevant and differentiation-competent rat epidermal keratinocytes (REKs). We found that all variants, when expressed alone or together with wildtype (WT) Cx30.
View Article and Find Full Text PDFAnnu Rev Chem Biomol Eng
January 2025
1School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA; email:
Production of polymer material goods on-demand is a recurring science fiction element, but advances in chemistry and engineering have pushed it closer to reality. Experienced at a hobby scale by 3D printing enthusiasts and at an industrial level through rapid prototyping and modular manufacturing, the approach is on its way to further flexibility and high-performance material production. We review the advances in on-demand materials design as well as manufacturing, using examples in space exploration and sustainability, because these are cases where the value proposition for rapid changes in materials is strong.
View Article and Find Full Text PDFACS Nano
January 2025
Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan 250012, P. R. China.
Blood-contacting medical devices can easily trigger immune responses, leading to thrombosis and hyperblastosis. Constructing microtexture that provides efficient antithrombotic and rapid reendothelialization performance on complex curved surfaces remains a pressing challenge. In this work, we present a robust and regular micronano binary texture on the titanium surface, characterized by exceptional mechanical strength and precisely controlled wettability to achieve excellent hemocompatibility.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!