Type 2 diabetes mellitus (T2D) is a risk factor for the development of tuberculosis (TB) through mechanisms poorly understood. Monocytes and macrophages are key effector cells to control TB, but they are also subverted by Mycobacterium tuberculosis (Mtb). Specifically, Mtb can induce a bystander effect that skews monocyte differentiation towards macrophages with a permissive phenotype to infection. Here, we evaluated whether T2D impacts this TB aspect. Our approach was to differentiate monocytes from healthy control (HC) subjects and T2D patients into macrophages (MDM), and then assess their response to Mtb infection, including their secretome content and bystander effect capacity. Through flow cytometric analyses, we found a lower level of activation markers in MDM from T2D patients than from HC in response to mock (HLA-DR, CD86 and CD163) or Mtb challenge (CD14 and CD80). In spite of high TGF-β1 levels in mock-infected MDM from T2D patients, cytometric bead arrays indicated that there were no major differences in the secretome cytokine content in these cells relative to HC-MDM, even in response to Mtb. Mimicking a bystander effect, the secretome of Mtb-infected HC-MDM drove HC monocytes towards MDM with a permissive phenotype for Mtb intracellular growth. However, the secretome from Mtb-infected T2D-MDM did not exacerbate the Mtb load compared to secretome from Mtb-infected HC-MDM, possibly due to the high IL-1β production relative to Mtb-infected HC-MDM. Collectively, despite T2D affecting the basal MDM activation, our approach revealed that it has no major consequence on their response to Mtb or capacity to generate a bystander effect influencing monocyte differentiation.

Download full-text PDF

Source
http://dx.doi.org/10.1111/imcb.12497DOI Listing

Publication Analysis

Top Keywords

monocyte differentiation
12
t2d patients
12
response mtb
12
secretome mtb-infected
12
mtb-infected hc-mdm
12
type diabetes
8
mycobacterium tuberculosis
8
mtb
8
permissive phenotype
8
mdm t2d
8

Similar Publications

Horse Innate Immunity in the Control of Equine Infectious Anemia Virus Infection: A Preliminary Study.

Viruses

November 2024

Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Via Appia Nuova 1411, 00178 Rome, Italy.

The mechanisms of the innate immunity control of equine infectious anemia virus in horses are not yet widely described. Equine monocytes isolated from the peripheral blood of three Equine infectious anemia (EIA) seronegative horses were differentiated in vitro into macrophages that gave rise to mixed cell populations morphologically referable to M1 and M2 phenotypes. The addition of two equine recombinant cytokines and two EIA virus reference strains, Miami and Wyoming, induced a more specific cell differentiation, and as for other species, IFNγ and IL4 stimulation polarized horse macrophages respectively towards the M1 and the M2 phenotypes.

View Article and Find Full Text PDF

The anti-cancer potential of eugenol (EUG) is well recognized, whereas that of spermidine (SPD) is subject to dispute and requires further research. The anti-tumorigenic potential of wheat germ SPD (150 µM) and clove EUG (100 µM), alone, in combination as SPD+EUG (50 µM + 100 µM) and, as a supplement (SUPPL; 0.6 µM SPD + 50 µM EUG), was investigated on both metastatic SW620 and primary Caco-2 colorectal cancer (CRC) spheroids.

View Article and Find Full Text PDF

Osteogenic CpG Oligodeoxynucleotide, iSN40, Inhibits Osteoclastogenesis in a TLR9-Dependent Manner.

Life (Basel)

November 2024

Department of Agriculture, Graduate School of Science and Technology, Shinshu University, 8304 Minami-minowa, Kami-ina, Nagano 399-4598, Japan.

A CpG oligodeoxynucleotide (CpG-ODN), iSN40, was originally identified as promoting the mineralization and differentiation of osteoblasts, independent of Toll-like receptor 9 (TLR9). Since CpG ODNs are often recognized by TLR9 and inhibit osteoclastogenesis, this study investigated the TLR9 dependence and anti-osteoclastogenic effect of iSN40 to validate its potential as an osteoporosis drug. The murine monocyte/macrophage cell line RAW264.

View Article and Find Full Text PDF

Metabolite accumulation in the tumor microenvironment fosters immune evasion and limits the efficiency of immunotherapeutic approaches. Methylthioadenosine phosphorylase (MTAP), which catalyzes the degradation of 5'-deoxy-5'methylthioadenosine (MTA), is downregulated in many cancer entities. Consequently, MTA accumulates in the microenvironment of MTAP-deficient tumors, where it is known to inhibit tumor-infiltrating T cells and NK cells.

View Article and Find Full Text PDF

Discordance Between Triglycerides, Remnant Cholesterol and Systemic Inflammation in Patients with Schizophrenia.

Biomedicines

December 2024

Atherosclerosis and Vascular Biology Laboratory, The ANZAC Research Institute, Concord Repatriation General Hospital, University of Sydney, Concord 2138, Australia.

Background/objectives: Hypertriglyceridaemia and systemic inflammation are prevalent in patients with schizophrenia and contribute to an increased risk of cardiovascular disease. Although elevated triglycerides (TGs) and remnant cholesterol are linked to inflammation in the general population and individuals with metabolic syndrome, whether they are associated in patients with schizophrenia remains unclear.

Methods: Fasting levels of TG, cholesterol (total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C) and remnant cholesterol)), and markers of systemic inflammation including high-sensitivity C-reactive protein (hsCRP), leukocyte counts and their differentials (neutrophils, monocytes and lymphocytes) were determined in 147 patients diagnosed with schizophrenia on long-term antipsychotic regimens and compared with 56 age- and sex-matched healthy controls.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!