Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This article presents a model-free λ -policy iteration ( λ -PI) for the discrete-time linear quadratic regulation (LQR) problem. To solve the algebraic Riccati equation arising from solving the LQR in an iterative manner, we define two novel matrix operators, named the weighted Bellman operator and the composite Bellman operator. Then, the λ -PI algorithm is first designed as a recursion with the weighted Bellman operator, and its equivalent formulation as a fixed-point iteration with the composite Bellman operator is shown. The contraction and monotonic properties of the composite Bellman operator guarantee the convergence of the λ -PI algorithm. In contrast to the PI algorithm, the λ -PI does not require an admissible initial policy, and the convergence rate outperforms the value iteration (VI) algorithm. Model-free extension of the λ -PI algorithm is developed using the off-policy reinforcement learning technique. It is also shown that the off-policy variants of the λ -PI algorithm are robust against the probing noise. Finally, simulation examples are conducted to validate the efficacy of the λ -PI algorithm.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TNNLS.2021.3098985 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!