Legionella pneumophila, the causative agent of Legionnaires' disease, is mostly found in man-made water systems and is one of the most closely monitored waterborne pathogens. With the aim of finding natural ways to control waterborne pathogens and thus further reduce the impact of disinfection by-products on human health, some studies have demonstrated the ability of bacteria to kill through the production of secondary metabolites or antimicrobial compounds. Here, we describe an unexpected growth inhibition of L. pneumophila when exposed to a physically separated strain of Pseudomonas fluorescens, designated as MFE01. Most of the members of the family are sensitive to the volatile substances emitted by MFE01, unlike other bacteria tested. Using headspace solid-phase microextraction GC-MS strategy, a volatilome comparison revealed that emission of 1-undecene, 2-undecanone, and 2-tridecanone were mainly reduced in a Tn-transposon mutant unable to inhibit at distance the growth of L. pneumophila strain Lens. We showed that 1-undecene was mainly responsible for the inhibition at distance , and led to cell lysis in small amounts, as determined by gas chromatography-mass spectrometry (GC-MS). Collectively, our results provide new insights into the mode of action of bacterial volatiles and highlight them as potent anti- agents to focus research on novel strategies to fight legionellosis. Microbial volatile compounds are molecules whose activities are increasingly attracting the attention of researchers. Indeed, they can act as key compounds in long-distance intrakingdom and interkingdom communication, but also as antimicrobials in competition and predation. In fact, most studies to date have focused on their antifungal activities and only a few have reported on their antibacterial properties. Here, we describe that 1-undecene, naturally produced by P. fluorescens, is a volatile with potent activity against bacteria of the genus . In small amounts, it is capable of inducing cell lysis even when the producing strain is physically separated from the target. This is the first time that such activity is described. This molecule could therefore constitute an efficient compound to counter bacterial pathogens whose treatment may fail, particularly in pulmonary diseases. Indeed, inhalation of these volatiles should be considered as a possible route of therapy in addition to antibiotic treatment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8552673 | PMC |
http://dx.doi.org/10.1128/Spectrum.00404-21 | DOI Listing |
Int J Gen Med
January 2025
Department of Respiratory and Critical Care Medical Department Infectious Diseases Ward, The Traditional Chinese Medicine Hospital Affiliated to Xinjiang Medical University, Urumqi, Xinjiang, People's Republic of China.
Background: This study examines the distribution characteristics of pathogenic bacteria in respiratory infections and their relationship with inflammatory markers to guide clinical drug use.
Methods: We selected 120 patients with lower respiratory tract infection in the electronic medical record system of Xinjiang Provincial People's Hospital from March 2019 to March 2023 for a case-control study. Using Indirect Immunofluorescence Antibody test(IFA), blood routine, C-reactive Protein (CRP), and High-sensitivity C-reactive Protein(hsCRP), we detected nine respiratory pathogens (Respiratory syncytial virus; Influenza A virus; Influenza B virus; Parainfluenza virus; Adenovirus; Mycoplasma pneumoniae; Chlamydia pneumoniae; Legionella pneumophila type 1; Rickettsia Q) in all patients and analyzed their distribution and correlation.
Biomolecules
January 2025
Department of Microbiology-Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada.
HtpB, the chaperonin of the bacterial pathogen , is found in extracellular locations, even the cytoplasm of host cells. Although chaperonins have an essential cytoplasmic function in protein folding, HtpB exits the cytoplasm to perform extracellular virulence-related functions that support 's lifestyle. The mechanism by which HtpB reaches extracellular locations is not currently understood.
View Article and Find Full Text PDFJ Bacteriol
January 2025
Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, New York, USA.
and are two phylogenetically related bacterial pathogens that exhibit extreme intrinsic resistance when they enter into a dormancy-like state. This enables both pathogens to survive extended periods in growth-limited environments. Survival is dependent upon their ability to undergo developmental transitions into two phenotypically distinct variants, one specialized for intracellular replication and another for prolonged survival in the environment and host.
View Article and Find Full Text PDFInt J Infect Dis
January 2025
National reference centre for Legionella pneumophila, Department of Microbiology, Universitair Ziekenhuis Brussel (UZ Brussel), Vrije Universiteit Brussel (VUB), Laarbeeklaan 101, 1090 Brussels, Belgium.
Introduction: The incidence of Legionnaires' disease (LD) steadily increases worldwide. Although Legionella pneumophila is known as pathogenic, systematic investigations into antibiotic resistance are scarce, and reports of resistance in isolates are recently emerging.
Methods: Clinical cases and metadata reported to the Belgian National Reference Centre between 2011 and 2022 were retrospectively analysed.
BMC Pulm Med
January 2025
Department of Respiratory and Critical Care Medicine, Lishui Hospital of Traditional Chinese Medicine Affiliated to Zhejiang University of Traditional Chinese Medicine, No. 800 Zhongshan Road, Liandu District, Lishui, Zhejiang, 323000, China.
Background: Legionella pneumophila is an uncommon pathogen causing community-acquired atypical pneumonia. Acinetobacter baumannii is a major pathogen responsible for hospital-acquired pneumonia, but it rarely causes serious infections in a community setting. Without prompt and appropriate treatments, infection from either of these two pathogens can cause a high mortality rate.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!