Menopause has been linked to changes in memory. Oestrogen-containing hormone therapy is prescribed to treat menopause-related symptoms and can ameliorate memory changes, although the parameters impacting oestrogen-related memory efficacy are unclear. Cognitive experience and practice have been shown to be neuroprotective and to improve learning and memory during ageing, with the type of task playing a role in subsequent cognitive outcomes. Whether task complexity matters, and whether these outcomes interact with menopause and oestrogen status, remains unknown. To investigate this, we used a rat model of surgical menopause to systematically assess whether maze task complexity, as well as order of task presentation, impacts spatial learning and memory during middle age when rats received vehicle, low-17β-oestradiol (E ) or high-E treatment. The direction, and even presence, of the effects of prior maze experience differed depending on the E dose. Surgical menopause without E treatment yielded the least benefit, as prior maze experience did not have a substantial effect on subsequent task performance for vehicle treated rats regardless of task demand level during the first exposure to maze experience or final testing. High-dose E yielded a variable benefit, and low-dose E produced the greatest benefit. Specifically, low-dose E broadly enhanced learning and memory in surgically menopausal rats that had prior experience on another task, regardless of the complexity level of this prior experience. These results demonstrate that E dose influences the impact of prior cognitive experience on learning and memory during ageing, and highlights the importance of prior cognitive experience in subsequent learning and memory outcomes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9124643PMC
http://dx.doi.org/10.1111/jne.13002DOI Listing

Publication Analysis

Top Keywords

learning memory
20
cognitive experience
16
task complexity
16
maze experience
12
experience
9
memory
9
task
8
experience task
8
surgically menopausal
8
menopausal rats
8

Similar Publications

Background: Cognitive deterioration is common in multiple sclerosis (MS) and requires regular follow-up. Currently, cognitive status is measured in clinical practice using paper-and-pencil tests, which are both time-consuming and costly. Remote monitoring of cognitive status could offer a solution because previous studies on telemedicine tools have proved its feasibility and acceptance among people with MS.

View Article and Find Full Text PDF

This review investigates the intricate relationship between exercise, brain-derived neurotrophic factor (BDNF), neuroplasticity, and cognitive function, with a focus on implications for neuropsychiatric and neurodegenerative disorders. A systematic review was conducted by searching various databases for relevant studies that explored the connections between exercise, BDNF, neuroplasticity, and cognitive health. The analysis of eligible studies revealed that exercise increases BDNF levels in the brain, promoting neuroplasticity and enhancing cognitive functions.

View Article and Find Full Text PDF

Exploring the mechanism of Radix Bupleuri in the treatment of depression combined with SARS-CoV-2 infection through bioinformatics, network pharmacology, molecular docking, and molecular dynamic simulation.

Metab Brain Dis

January 2025

State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510180, China.

Background: Radix Bupleuri is commonly used in treating depression and acute respiratory diseases such as SARS-CoV-2 infection in China. However, its underlying mechanism in treating major depressive disorder combined with SARS-CoV-2 infection remains unclear.

Aim: This study aims to elucidate the pharmacological mechanisms of Radix Bupleuri in treating major depressive disorder combined with SARS-CoV-2 infection, employing bioinformatics, network pharmacology, molecular docking, and dynamic simulation techniques.

View Article and Find Full Text PDF

Source-free domain adaptation (SFDA) has become crucial in medical image analysis, enabling the adaptation of source models across diverse datasets without labeled target domain images. Self-training, a popular SFDA approach, iteratively refines self-generated pseudo-labels using unlabeled target domain data to adapt a pre-trained model from the source domain. However, it often faces model instability due to incorrect pseudo-label accumulation and foreground-background class imbalance.

View Article and Find Full Text PDF

Edaravone Mitigates Hippocampal Neuronal Death and Cognitive Dysfunction by Upregulating BDNF Expression in Neonatal Hypoxic-Ischemic Rats.

Int J Dev Neurosci

February 2025

Department of Digestive and Nutrition, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China.

Neonatal hypoxic-ischemic encephalopathy (HIE) is a severe neurological injury during infancy, often resulting in long-term cognitive deficits. This study aimed to investigate the neuroprotective effects of Edaravone (EDA), a free radical scavenger, and elucidate the potential role of brain-derived neurotrophic factor (BDNF) in mediating these effects in neonatal HIE rats. Using the Rice-Vannucci model, HIE was induced in neonatal rats, followed by immediate administration of EDA after the hypoxic-ischemic insult.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!