Accuracy of genomic predictions is an important component of the selection response. The objectives of this research were: 1) to investigate trends for prediction accuracies over time in a broiler population of accumulated phenotypes, genotypes, and pedigrees and 2) to test if data from distant generations are useful to maintain prediction accuracies in selection candidates. The data contained 820K phenotypes for a growth trait (GT), 200K for two feed efficiency traits (FE1 and FE2), and 42K for a carcass yield trait (CY). The pedigree included 1,252,619 birds hatched over 7 years, of which 154,318 from the last 4 years were genotyped. Training populations were constructed adding 1 year of data sequentially, persistency of accuracy over time was evaluated using predictions from birds hatched in the three generations following or in the years after the training populations. In the first generation, before genotypes became available for the training populations (first 3 years of data), accuracies remained almost stable with successive additions of phenotypes and pedigree to the accumulated dataset. The inclusion of 1 year of genotypes in addition to 4 years of phenotypes and pedigree in the training population led to increases in accuracy of 54% for GT, 76% for FE1, 110% for CY, and 38% for FE2; on average, 74% of the increase was due to genomics. Prediction accuracies declined faster without than with genomic information in the training populations. When genotypes were unavailable, the average decline in prediction accuracy across traits was 41% from the first to the second generation of validation, and 51% from the second to the third generation of validation. When genotypes were available, the average decline across traits was 14% from the first to the second generation of validation, and 3% from the second to the third generation of validation. Prediction accuracies in the last three generations were the same when the training population included 5 or 2 years of data, and a decrease of ~7% was observed when the training population included only 1 year of data. Training sets including genomic information provided an increase in accuracy and persistence of genomic predictions compared with training sets without genomic data. The two most recent years of pedigree, phenotypic, and genomic data were sufficient to maintain prediction accuracies in selection candidates. Similar conclusions were obtained using validation populations per year.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8420680 | PMC |
http://dx.doi.org/10.1093/jas/skab239 | DOI Listing |
J Med Internet Res
January 2025
Department of Health Policy and Management, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States.
Background: Uncertainty in the diagnosis of lung nodules is a challenge for both patients and physicians. Artificial intelligence (AI) systems are increasingly being integrated into medical imaging to assist diagnostic procedures. However, the accuracy of AI systems in identifying and measuring lung nodules on chest computed tomography (CT) scans remains unclear, which requires further evaluation.
View Article and Find Full Text PDFJ Urol
January 2025
Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO.
Purpose: Conventional prostate magnetic resonance imaging has limited accuracy for clinically significant prostate cancer (csPCa). We performed diffusion basis spectrum imaging (DBSI) prior to biopsy and applied artificial intelligence models to these DBSI metrics to predict csPCa.
Materials And Methods: Between February 2020 and March 2024, 241 patients underwent prostate MRI that included conventional and DBSI-specific sequences prior to prostate biopsy.
Proc Natl Acad Sci U S A
February 2025
Department of Computer Science, University of Manchester, Manchester M13 9PL, United Kingdom.
The preference for simple explanations, known as the parsimony principle, has long guided the development of scientific theories, hypotheses, and models. Yet recent years have seen a number of successes in employing highly complex models for scientific inquiry (e.g.
View Article and Find Full Text PDFJ Bone Miner Res
January 2025
Sahlgrenska Osteoporosis Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden.
The socioeconomic burden of hip fractures, the most severe osteoporotic fracture outcome, is increasing and the current clinical risk assessment lacks sensitivity. This study aimed to develop a method for improved prediction of hip fracture by incorporating measurements of bone microstructure and composition derived from high-resolution peripheral quantitative computed tomography (HR-pQCT). In a prospective cohort study of 3028 community-dwelling women aged 75 to 80, all participants answered questionnaires and underwent baseline examinations of anthropometrics and bone by dual x-ray absorptiometry (DXA) and HR-pQCT.
View Article and Find Full Text PDFJ Exp Psychol Gen
January 2025
Institute for Mind and Biology, University of Chicago.
Individual differences in working memory predict a wide range of cognitive abilities. However, little research has been done on whether working memory continues to predict task performance after repetitive learning. Here, we tested whether working memory ability continued to predict long-term memory (LTM) performance for picture sequences even after participants showed massive learning.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!