An optimized BRD4 inhibitor effectively eliminates NF-κB-driven triple-negative breast cancer cells.

Bioorg Chem

State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, 999078, Macao; Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, 999078, Macao.

Published: September 2021

Acetylation of NF-κB's RelA subunit at lysine-310 (AcLys310) helps to maintain constitutive NF-κB activity in cancers such as triple-negative breast cancer (TNBC). Bromodomain-containing factor BRD4 binds to acetylated RelA to promote the activity of NF-κB. Hence, interfering with the acetylated RelA-BRD4 interaction is a potential strategy for treating NF-κB-driven TNBC. Here, a new compound 13a was obtained by structural optimization and modification of our previously reported compound. In comparison with the well-known BRD4 inhibitor (+)-JQ1, 13a showed more potent anticancer activity in NF-κB-active MDA-MB-231 cells. Mechanistically, 13a antagonized the protein-protein interaction (PPI) between BRD4 and acetylated RelA, decreased levels of IL-6, IL-8, Snail, Vimentin, and ZEB1, induced cell senescence and DNA damage, and weakened the adhesion, metastasis, and invasion ability of TNBC cells. Our results provide insights into avenues for the further development of potent BRD4-acetylated RelA PPI inhibitors. Moreover, our findings highlight the effectiveness and feasibility of blocking the interaction between BRD4 and acetylated RelA against NF-κB-active cancers, and of screening antagonists of this PPI.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bioorg.2021.105158DOI Listing

Publication Analysis

Top Keywords

acetylated rela
12
brd4 inhibitor
8
triple-negative breast
8
breast cancer
8
brd4 acetylated
8
rela
5
optimized brd4
4
inhibitor effectively
4
effectively eliminates
4
eliminates nf-κb-driven
4

Similar Publications

Article Synopsis
  • Intervertebral disc degeneration (IVDD) is a major cause of low back pain, and while Sirt1 agonists show promise in protecting intervertebral discs, the exact mechanisms involved are not fully understood.
  • The study utilized various models to investigate the role of Sirt1 in disc cell inflammation and homeostasis, revealing that Sirt1 overexpression can inhibit inflammation and matrix degradation in degenerating discs.
  • Findings suggest that Sirt1 regulates inflammation by negatively impacting Lipocalin 2, signaling a potential pathway for developing treatments aimed at preventing IVDD progression.
View Article and Find Full Text PDF

Objective: Post-resuscitation brain injury is a common sequela after cardiac arrest (CA). Increasing sirtuin1 (SIRT1) has been involved in neuroprotection in oxygen-glucose deprivation (OGD) neurons, and we investigated its mechanism in post-cardiopulmonary resuscitation (CPR) rat brain injury by mediating p65 deacetylation modification to mediate hippocampal neuronal ferroptosis.

Methods: Sprague-Dawley rat CA/CPR model was established and treated with Ad-SIRT1 and Ad-GFP adenovirus vectors, or Erastin.

View Article and Find Full Text PDF

Exogenous acetate attenuates inflammatory responses through HIF-1α-dependent glycolysis regulation in macrophage.

Cell Mol Life Sci

December 2024

Faculty of Anesthesiology, Changhai Hospital (First Affiliated Hospital of Naval Medical University), Naval Medical University, Shanghai, 200433, China.

Cytokine storm is a hallmark for acute systemic inflammatory disease like sepsis. Intrinsic microbiome-derived short-chain fatty acid (SCFAs) like acetate modulates immune cell function and metabolism has been well studied. However, it remains poorly investigated about the effects and the underlying mechanism of exogenous acetate in acute inflammation like sepsis.

View Article and Find Full Text PDF

The cat eye syndrome chromosome region candidate 2 (CECR2) protein is an epigenetic regulator involved in chromatin remodeling and transcriptional control. The CECR2 bromodomain (CECR2-BRD) plays a pivotal role in directing the activity of CECR2 through its capacity to recognize and bind acetylated lysine residues on histone proteins. This study elucidates the binding specificity and structural mechanisms of CECR2-BRD interactions with both histone and non-histone ligands, employing techniques such as isothermal titration calorimetry (ITC), nuclear magnetic resonance (NMR) spectroscopy, and a high-throughput peptide assay.

View Article and Find Full Text PDF

Lysine and arginine methylation of transcription factors.

Cell Mol Life Sci

December 2024

Institute of Biochemistry, Justus-Liebig-University Giessen, Friedrichstrasse 24, 35392, Giessen, Germany.

Post-translational modifications (PTMs) are implicated in many biological processes including receptor activation, signal transduction, transcriptional regulation and protein turnover. Lysine's side chain is particularly notable, as it can undergo methylation, acetylation, SUMOylation and ubiquitination. Methylation affects not only lysine but also arginine residues, both of which are implicated in epigenetic regulation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!