Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A series of geopolymers were synthesized from fly and bottom ashes of a thermoelectrical power plant located in the Brazilian southern, aiming to add value for these wastes. The geopolymers were prepared in conventional and ultrasound-assisted ways and used to uptake Ag, Co, Cu, and Ni from aqueous solutions. All materials were characterized by infrared spectroscopy (FT-IR), X-ray diffraction (XRD), and N adsorption isotherms (BET and BJH methods). The results revealed that the geopolymers obtained from the conventional method presented slightly higher values of surface area and total pore volume. However, in some cases, the adsorption potential was better for the ultrasound synthesized materials. The geopolymers prepared from both methods presented good adsorption performance concerning Ag and Cu, Co and Ni. The removal percentages were higher than 90%. In addition, the adsorption capacities were within the literature range. These findings show that the ultrasound technique is not essential to improve the geopolymers production process compared to the conventional process, which generated material with better performance for heavy metals adsorption. Besides, it was possible to aggregate value for fly and bottom ashes, generating promising adsorbent materials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-021-15882-3 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!