[Impressive finding in a case of pharyngeal foreign body sensation].

HNO

Klinik und Poliklinik für Hals‑, Nasen- und Ohrenheilkunde, Schädelbasiszentrum, Universitätsklinikum Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Deutschland.

Published: June 2022

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00106-021-01093-2DOI Listing

Publication Analysis

Top Keywords

[impressive finding
4
finding a case
4
a case pharyngeal
4
pharyngeal foreign
4
foreign body
4
body sensation]
4
[impressive
1
a case
1
pharyngeal
1
foreign
1

Similar Publications

Generative Artificial Intelligence (AI), characterized by its ability to generate diverse forms of content including text, images, video and audio, has revolutionized many fields, including medical education. Generative AI leverages machine learning to create diverse content, enabling personalized learning, enhancing resource accessibility, and facilitating interactive case studies. This narrative review explores the integration of generative artificial intelligence (AI) into orthopedic education and training, highlighting its potential, current challenges, and future trajectory.

View Article and Find Full Text PDF

Versatile electrospun cobalt-doped carbon films for rapid antibiotic degradation.

J Environ Manage

December 2024

College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, Zhejiang, China. Electronic address:

This study presents a novel approach to water contamination remediation by developing cobalt-doped carbon nanofiber films using electrospun ZIF-67 precursors, aiming to degrade tetracycline hydrochloride (TCH) and other antibiotics. This method uniquely combines the advantages of metal-organic frameworks (MOFs) and electrospinning to enhance catalytic performance, demonstrating significant innovation in environmental catalysis. The research systematically evaluated the impact of various factors on the catalytic activity of carbonized PAN@ZIF-67 films (CPZF), including carbonization temperature, ZIF-67 content, and PMS dosage.

View Article and Find Full Text PDF

Explainable AI-Based Skin Cancer Detection Using CNN, Particle Swarm Optimization and Machine Learning.

J Imaging

December 2024

PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Turin, Italy.

Skin cancer is among the most prevalent cancers globally, emphasizing the need for early detection and accurate diagnosis to improve outcomes. Traditional diagnostic methods, based on visual examination, are subjective, time-intensive, and require specialized expertise. Current artificial intelligence (AI) approaches for skin cancer detection face challenges such as computational inefficiency, lack of interpretability, and reliance on standalone CNN architectures.

View Article and Find Full Text PDF

Enhanced Ammonia Capture for Adsorption Heat Pumps Using a Salt-Embedded COF Aerogel Composite.

Gels

November 2024

School of Mechanical and Aerospace Engineering, Gyeongsang National University, Jinju 52828, Republic of Korea.

Adsorption heat pumps (AHPs) have garnered significant attention due to their efficient use of low-grade thermal energy, eco-friendly nature, and cost-effectiveness. However, a significant challenge lies in developing adsorbent materials that can achieve a high uptake capacity, rapid adsorption rates, and efficient reversible release of refrigerants, such as ammonia (NH). Herein, we developed and synthesized a novel salt-embedded covalent organic framework (COF) composite material designed for enhanced NH capture.

View Article and Find Full Text PDF

Upgrading the Bioinspired Iron-Polyporphyrin Structures by Abiological Metals Toward New-Generation Reactive Oxygen Biocatalysts.

Nano Lett

December 2024

College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.

Developing artificial enzymes based on organic molecules or polymers for reactive oxygen biocatalysis has broad applicability. Here, inspired by heme-based enzyme systems, we construct the abiological iron group metal-based polyporphyrin (Ru/Os-coordinated porphyrin-based biocatalyst, Ru/Os-PorBC) to serve as a new generation of efficient and versatile reactive oxygen species (ROS)-related biocatalyst. Due to the structural benefits, including excellent electron configuration, appropriate bandgap, and optimized adsorption and activation of reaction intermediates, Ru/Os-PorBC shows unparalleled ROS-production activities regarding maximum reaction rate and turnover numbers, which also demonstrates superior pH and temperature adaptability compared to natural enzymes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!