Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In silico reuse of old drugs (also known as drug repositioning) to treat common and rare diseases is increasingly becoming an attractive proposition because it involves the use of de-risked drugs, with potentially lower overall development costs and shorter development timelines. Therefore, there is a pressing need for computational drug repurposing methodologies to facilitate drug discovery. In this study, we propose a new method, called DRHGCN (Drug Repositioning based on the Heterogeneous information fusion Graph Convolutional Network), to discover potential drugs for a certain disease. To make full use of different topology information in different domains (i.e. drug-drug similarity, disease-disease similarity and drug-disease association networks), we first design inter- and intra-domain feature extraction modules by applying graph convolution operations to the networks to learn the embedding of drugs and diseases, instead of simply integrating the three networks into a heterogeneous network. Afterwards, we parallelly fuse the inter- and intra-domain embeddings to obtain the more representative embeddings of drug and disease. Lastly, we introduce a layer attention mechanism to combine embeddings from multiple graph convolution layers for further improving the prediction performance. We find that DRHGCN achieves high performance (the average AUROC is 0.934 and the average AUPR is 0.539) in four benchmark datasets, outperforming the current approaches. Importantly, we conducted molecular docking experiments on DRHGCN-predicted candidate drugs, providing several novel approved drugs for Alzheimer's disease (e.g. benzatropine) and Parkinson's disease (e.g. trihexyphenidyl and haloperidol).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/bib/bbab319 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!