The development of resistance to chemotherapeutic agents, such as Doxorubicin (DOX) and cytarabine (AraC), is one of the greatest challenges to the successful treatment of Acute Myeloid Leukemia (AML). Such acquisition is often underlined by a metabolic reprogramming that can provide a therapeutic opportunity, as it can lead to the emergence of vulnerabilities and dependencies to be exploited as targets against the resistant cells. In this regard, genome-scale metabolic models (GSMMs) have emerged as powerful tools to integrate multiple layers of data to build cancer-specific models and identify putative metabolic vulnerabilities. Here, we use genome-scale metabolic modelling to reconstruct a GSMM of the THP1 AML cell line and two derivative cell lines, one with acquired resistance to AraC and the second with acquired resistance to DOX. We also explore how, adding to the transcriptomic layer, the metabolomic layer enhances the selectivity of the resulting condition specific reconstructions. The resulting models enabled us to identify and experimentally validate that drug-resistant THP1 cells are sensitive to the FDA-approved antifolate methotrexate. Moreover, we discovered and validated that the resistant cell lines could be selectively targeted by inhibiting squalene synthase, providing a new and promising strategy to directly inhibit cholesterol synthesis in AML drug resistant cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8326745 | PMC |
http://dx.doi.org/10.1016/j.csbj.2021.06.049 | DOI Listing |
Biotechnol J
January 2025
Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.
The sesquiterpene (+)-valencene, with its flavor and diverse biological functions, holds promise for applications in the food, fragrance, and pharmaceutical industries. However, the low concentration in nature and high cost of extraction limit its application. This study aimed to construct a microbial cell factory to efficiently produce (+)-valencene.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Pharmacognosy, Heilongjiang University of Chinese Medicine, Harbin, 150040, Hei-longjiang, China.
The roots of Panax ginseng C. A. Meyer (ginseng) are one of the traditional medicinal herbs in Asian countries and is known as the "king of all herbs".
View Article and Find Full Text PDFMol Metab
December 2024
Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy. Electronic address:
J Agric Food Chem
December 2024
Guangdong Engineering Research Center of Biosynthesis and Metabolism of Effective Components of Chinese Medicine, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, P. R. China.
J Biomol Struct Dyn
December 2024
Laboratory of Biology and Health, Faculty of Sciences Ben M'Sick, Health and Biotechnology Research Centre, Hassan II University of Casablanca, Casablanca, Morocco.
Squalene synthase (SQS) plays a crucial role in the cholesterol biosynthetic pathway. Its distinctive strategic position makes it a promising candidate for targeting and developing new anti-hypercholesterolemic agents. To uncover novel phytochemical scaffolds as potential inhibitors of SQS, we employed a structure-based virtual screening approach that involves screening 545 phytochemicals collected from Moroccan aromatic and medicinal plants and filtering them based on RMSD values and their affinity towards the target enzyme.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!