As the world continues to respond to the coronavirus pandemic (COVID-19), there is a larger hidden threat of antimicrobial resistance (AMR) lurking behind. AMR remains worrisome in that the pathogens causing resistant infections to thrive in hospitals and medical facilities, putting all patients at risk, irrespective of the severity of their medical conditions, further compounding the management of COVID-19. This study aims to provide overview of early findings on COVID-19 and AMR as well as to provide recommendations and lesson learned toward improving antimicrobial stewardship. We conducted a rapid narrative review of published articles by searching PubMed and Google Scholar on COVID-19 and Antimicrobial Resistance with predetermined keywords. Secondary bacterial infections play crucial roles in mortality and morbidity associated with COVID-19. Research has shown that a minority of COVID-19 patients need antibiotics to treat secondary bacterial infections. Current evidence reiterates the need not to give antibiotic therapy or prophylaxis to patients with mild COVID-19 or to patients with suspected or confirmed moderate COVID-19 illness unless it is indicated. The pandemic has also brought to the fore the deficiencies in health systems around the world. This comes with a lot of lessons, one of which is that despite the advances in medicine; we remain incredibly vulnerable to infections with limited or no standard therapies. This is worth thinking in the context of AMR, as the resistant pathogens are evolving and leading us to the era of untreatable infections. There is a necessity for continuous research into understanding and controlling infectious agents, as well as the development of newer functional antimicrobials and the need to strengthen the antimicrobial stewardship programs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8327234PMC
http://dx.doi.org/10.1177/11786337211033870DOI Listing

Publication Analysis

Top Keywords

antimicrobial resistance
12
covid-19
9
covid-19 antimicrobial
8
antimicrobial stewardship
8
secondary bacterial
8
bacterial infections
8
covid-19 patients
8
infections
5
resistance review
4
review continues
4

Similar Publications

Shotgun and proximity-ligation metagenomic sequencing were used to generate thousands of metagenome assembled genomes (MAGs) from the untreated wastewater, activated sludge bioreactors, and anaerobic digesters from two full-scale municipal wastewater treatment facilities. Analysis of the antibiotic resistance genes (ARGs) in the pool of contigs from the shotgun metagenomic sequences revealed significantly different relative abundances and types of ARGs in the untreated wastewaster compared to the activated sludge bioreactors or the anaerobic digesters (p < 0.05).

View Article and Find Full Text PDF

AIE-Active Antibacterial Photosensitizer Disrupting Bacterial Structure: Multicenter Validation against Drug-Resistant Pathogens.

Small Methods

January 2025

Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, P. R. China.

Antimicrobial resistance (AMR) has emerged as a global challenge in treating bacterial infections, creating an urgent need for broad-spectrum antimicrobial agents that can effectively combat multidrug-resistant (MDR) bacteria. Despite advancements in novel antimicrobial agents, many fail to comprehensively cover common resistant bacterial strains or undergo rigorous multi-center validation. Herein, a cationic AIE-active photosensitizers are developed, ITPM, derived from a triphenylamine-pyridine backbone to address the MDR challenge.

View Article and Find Full Text PDF

Challenges and considerations in liposomal hydrogels for the treatment of infection.

Expert Opin Drug Deliv

January 2025

Drug Transport and Delivery Research Group, Department of Pharmacy, Faculty of Health Sciences, University of Tromsø The Arctic University of Norway, Tromsø, Norway.

Introduction: Liposomal hydrogels are novel drug delivery systems that comprise preformed liposomes incorporated in hydrogels destined for mostly localized drug therapy, herewith antimicrobial therapy. The formulation benefits from versatility of liposomes as lipid-based nanocarriers that enable delivery of various antimicrobials of different lipophilicities, and secondary vehicle, hydrogel, that assures better retention time of formulation at the infection site. Especially in an era of alarming antimicrobial resistance, efficient localized antimicrobial therapy that avoids systemic exposure of antimicrobial and related side effects is crucial.

View Article and Find Full Text PDF

Background/objectives: Type 2 diabetes mellitus (T2DM) is considered a serious risk to public health since its prevalence is rapidly increasing worldwide despite numerous therapeutics. Insulin resistance in T2DM contributes to chronic inflammation and other metabolic abnormalities that generate fat accumulation in the liver, eventually leading to the progression of metabolic dysfunction-associated fatty liver disease (MAFLD). Recently, the possibility that microbial-derived metabolites may alleviate MAFLD through enterohepatic circulation has emerged, but the underlying mechanism remains unclear.

View Article and Find Full Text PDF

, a Gram-negative anaerobic bacterium colonizing the intestinal mucus layer, is regarded as a promising "next-generation probiotic". There is mounting evidence that diabetes and its complications are associated with disorders of abundance. Thus, and its components, including the outer membrane protein Amuc_1100, -derived extracellular vesicles (AmEVs), and the secreted proteins P9 and Amuc_1409, are systematically summarized with respect to mechanisms of action in diabetes mellitus.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!