A novel approach to link the environmental stresses with the COVID-19 cases is adopted during this research. The time-dependent data are extracted from the online repositories that are freely available for knowledge and research. Since the time series data analysis is desired for the COVID-19 time-dependent frequent waves, here in this manuscript, we have developed a time series model with the aid of "nonlinear autoregressive network with exogenous inputs (NARX)" approach. The distribution of infectious agent-containing droplets from an infected person to an uninfected person is a common form of respiratory disease transmission. SARS-CoV-2 has mainly spread via short-range respiratory droplet transmission. Airborne transmission of SARS-CoV-2 seems to have occurred over long distances or times in unusual conditions; SARS-CoV-2 RNA was found in PM10 collected in Italy. This research shows that SARS-CoV-2 particles adsorbed to outdoor PM remained viable for a long time, given the epidemiology of COVID-19, outdoor air pollution is unlikely to be a significant route of transmission. In this research, ANN time series is used to analyze the data resulting from the COVID-19 first and second waves and the forecasted results show that air pollution affects people in different areas of Italy and make more people sick with covid-19. The model is developed based on the disease transmission data of Italy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8339161PMC
http://dx.doi.org/10.1007/s11071-021-06777-6DOI Listing

Publication Analysis

Top Keywords

time series
12
environmental stresses
8
frequent waves
8
disease transmission
8
transmission sars-cov-2
8
air pollution
8
covid-19
5
transmission
5
forecasting impact
4
impact environmental
4

Similar Publications

Background: The World Health Organization classified coronavirus disease (COVID-19) as a pandemic by March 11, 2020. Children had a milder disease than adults, and many were asymptomatic. The pandemic could be seen as a natural experiment with several changes, including time spent at home.

View Article and Find Full Text PDF

The pathogenic potential of airborne particles carrying the SARS-CoV-2 viral genome was examined by considering the size distribution of airborne particles at given distances from the respiratory zone of an infected patient after coughing or sneezing with a focus on time, temperature, and relative humidity. The results show an association between the size distribution of airborne particles, particularly PM and PM, and the presence of viral genome in different stations affected by the distance from the respiratory zone and the passage of time. The correlation with time was strong with all the dependent factors except PM.

View Article and Find Full Text PDF

Objective: Skull base chordomas (SBCs) often present with cranial nerve (CN) VI deficits. Studies have not assessed the prognosis and predictive factors for CN VI recovery among patients presenting with CN VI deficits.

Methods: The medical records of patients who underwent resection for primary chordoma from 2001 to 2020 were reviewed.

View Article and Find Full Text PDF

Digital Frequency Customized Relieving Sound for Chronic Subjective Tinnitus Management: Prospective Controlled Study.

J Med Internet Res

January 2025

ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China.

Background: Tinnitus is a major health issue, but currently no tinnitus elimination treatments exist for chronic subjective tinnitus. Acoustic therapy, especially personalized acoustic therapy, plays an increasingly important role in tinnitus treatment. With the application of smartphones, personalized acoustic stimulation combined with smartphone apps will be more conducive to the individualized treatment and management of patients with tinnitus.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!