The electromagnetic properties of the metal based dielectric in the field of millimeter and sub-millimeter technology attracts a new era for innovation. In this research work, we have introduced a parallel LC shaped metamaterial resonator with wider bandwidth. The negative refractive index for two resonant frequencies is located from the negative permittivity from 5.1 to 6.3, 10.4 to 12.9 GHz, where the negative refractive index is located from 5.4 to 6.3 and 10.5 to 13.5 GHz. The electromagnetic wave polarizing in the proposed structure with parallel LC shaped metallic structure shows a fascinating response of wider bandwidth for the external electric and magnetic field. This paper focuses on the design of conducting layer for the suggested design with the parallel metallic arm for analysing the mutual coupling effect of the scattering response where the sub-branch in metallic design is shown more resonant frequencies with the enhancement of the compactness. This proposed structure is analysed with different metallic arrangements and array structures for different boundary conditions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8355226PMC
http://dx.doi.org/10.1038/s41598-021-95468-8DOI Listing

Publication Analysis

Top Keywords

parallel shaped
12
wider bandwidth
12
shaped metamaterial
8
metamaterial resonator
8
negative refractive
8
resonant frequencies
8
proposed structure
8
parallel
4
resonator band
4
band satellite
4

Similar Publications

Metabolic reprogramming of cancer cells and the tumour microenvironment are pivotal characteristics of cancers, and studying these processes offer insights and avenues for cancer diagnostics and therapeutics. Recent advancements have underscored the impact of host systemic features, termed macroenvironment, on facilitating cancer progression. During tumorigenesis, these inherent features of the host, such as germline genetics, immune profile and the metabolic status, influence how the body responds to cancer.

View Article and Find Full Text PDF

Massively parallel characterization of transcriptional regulatory elements.

Nature

January 2025

Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA.

The human genome contains millions of candidate cis-regulatory elements (cCREs) with cell-type-specific activities that shape both health and many disease states. However, we lack a functional understanding of the sequence features that control the activity and cell-type-specific features of these cCREs. Here we used lentivirus-based massively parallel reporter assays (lentiMPRAs) to test the regulatory activity of more than 680,000 sequences, representing an extensive set of annotated cCREs among three cell types (HepG2, K562 and WTC11), and found that 41.

View Article and Find Full Text PDF

The shape of cleaved tethered membranes.

Soft Matter

January 2025

Department of Chemistry, Columbia University, 3000 Broadway, New York, NY 10027, USA.

A remarkable property of flexible self-avoiding elastic surfaces (membranes) is that they remain flat at all temperatures, even in the absence of a bending rigidity or in the presence of active fluctuations. Here, we report numerical results of these surfaces wherein we alter their topology by systematically cleaving internal bonds. While it is known that a random removal of membrane bonds does not disrupt the overall extended shape of the membrane, we find that cleaving an elastic surface with longitudinal parallel cuts leads to its systematic collapse into a number of complex morphologies that can be controlled by altering the number and length of the inserted cuts.

View Article and Find Full Text PDF

Exploiting supramolecular secondary building units (SSBUs) for developing porous crystalline materials represents an exciting breakthrough that extends the boundaries of reticular chemistry. However, shaping polynuclear clusters sustained by non-covalent interactions for the assembly of hydrogen-bonded frameworks remains a critical challenge. This study presents a novel strategy to stabilize SSBUs by tuning the π-stacking geometry of conjugated building blocks, facilitating the creation of hydrogen-bonded frameworks with tailored architectures for demanding gas separation.

View Article and Find Full Text PDF

Soft and stretchable strain sensors are crucial for applications in human-machine interfaces, flexible robotics, and electronic skin. Among these, capacitive strain sensors are widely used and studied; however, they face challenges due to material and structural constraints, such as low baseline capacitance and susceptibility to external interference, which result in low signal-to-noise ratios and poor stability. To address these issues, we propose a U-shaped electrode flexible strain sensor based on liquid metal elastomer (LME).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!