Clinical value and role of microRNA-29c-3p in sepsis-induced inflammation and cardiac dysfunction.

Eur J Med Res

Department of Emergency and Critical Care Medicine, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, No. 2800, Gongwei Road, Pudong district, Shanghai, 201399, China.

Published: August 2021

Background: The goal of this study was to investigate the diagnostic value of miR-29c-3p in sepsis and its role in sepsis-induced inflammatory response and cardiac dysfunction.

Methods: Serum level of miR-29c-3p was detected by qRT-PCR. The ROC curve was used to evaluate the diagnostic value of miR-29c-3p for Sepsis. The cecal ligation and puncture method (CLP) was used to establish a rat sepsis model. To assess cardiac function, left ventricular systolic pressure (LVSP), left ventricular end diastolic pressure (LVEDP) and maximum rate of rise/fall of left ventricle pressure (± dp/dt) in different experimental groups were detected, and the serum cardiac troponin I (cTnI), creative kinase isoenzyme MB (CK-MB) were measured by ELISA. Meanwhile, TNF-α, IL-1β, and IL-6 were detected by ELISA to assess the level of inflammatory response in animals.

Results: miR-29c-3p level was upregulated in sepsis patients. ROC curve revealed that miR-29c-3p had the ability to distinguish sepsis patients from healthy controls. Cardiac dysfunction and inflammation were observed in sepsis rat, which were characterized by the decrease of LVSP and + dp/dt, the increase of LVEDP, - dp/dt, cTnI, CK-MB, TNF-α, IL-1β, IL-6. All effects were reversed by the injection of miR-29c-3p antagomir. Logistics regression analysis manifested miR-29c-3p is an independent factor in the occurrence of cardiac dysfunction in sepsis patients.

Conclusions: miR-29c-3p has potential as a biomarker for the diagnosis of sepsis, and inhibition of miR-29c-3p expression in animal models reduced sepsis-induced cardiac dysfunction and inflammatory response.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8353850PMC
http://dx.doi.org/10.1186/s40001-021-00566-yDOI Listing

Publication Analysis

Top Keywords

cardiac dysfunction
16
inflammatory response
12
mir-29c-3p
9
diagnostic mir-29c-3p
8
sepsis
8
mir-29c-3p sepsis
8
roc curve
8
left ventricular
8
tnf-α il-1β
8
sepsis patients
8

Similar Publications

Novel Therapies for Right Ventricular Failure.

Curr Cardiol Rep

January 2025

Pediatric Advanced Heart Failure and Heart Transplant Program, University of Mississippi Medical Center, 2500 N State Street, Jackson, MS, USA.

Purpose Of Review: Traditionally viewed as a passive player in circulation, the right ventricle (RV) has become a pivotal force in hemodynamics. RV failure (RVF) is a recognized complication of primary cardiac and pulmonary vascular disorders and is associated with a poor prognosis. Unlike treatments for left ventricular failure (LVF), strategies such as adrenoceptor signaling inhibition and renin-angiotensin system modulation have shown limited success in RVF.

View Article and Find Full Text PDF

Recent evidence suggests that ketone bodies have therapeutic potential in many cardiovascular diseases including heart failure (HF). Accordingly, this has led to multiple clinical trials that use ketone esters to treat HF patients, which we term ketone therapy. Ketone esters, specifically ketone monoesters, are synthetic compounds which, when consumed, are de-esterified into two β-hydroxybutyrate (βOHB) molecules and increase the circulating βOHB concentration.

View Article and Find Full Text PDF

Microgravity-induced cardiac remodeling and dysfunction present significant challenges to long-term spaceflight, highlighting the urgent need to elucidate the underlying molecular mechanisms and develop precise countermeasures. Previous studies have outlined the important role of miRNAs in cardiovascular disease progression, with miR-199a-3p playing a crucial role in myocardial injury repair and the maintenance of cardiac function. However, the specific role and expression pattern of miR-199a-3p in microgravity-induced cardiac remodeling remain unclear.

View Article and Find Full Text PDF

Arrhythmogenic calmodulin variants D131E and Q135P disrupt interaction with the L-type voltage-gated Ca channel (Ca1.2) and reduce Ca-dependent inactivation.

Acta Physiol (Oxf)

February 2025

Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK.

Aim: Long QT syndrome (LQTS) and catecholaminergic polymorphism ventricular tachycardia (CPVT) are inherited cardiac disorders often caused by mutations in ion channels. These arrhythmia syndromes have recently been associated with calmodulin (CaM) variants. Here, we investigate the impact of the arrhythmogenic variants D131E and Q135P on CaM's structure-function relationship.

View Article and Find Full Text PDF

Objective: To explore the prognostic significance of Sestrin-2 and Galectin-3 levels in atrial fibrillation complicated by left atrial remodelling, aiming to offer novel insights for prevention, treatment, and follow-up strategies.

Study Design: Analytical study. Place and Duration of the Study: Department of Cardiology, Second People's Hospital of Anhui Province, Hefei, China, from January 2021 to December 2023.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!