Dynamic lung behavior under high G acceleration monitored with electrical impedance tomography.

Physiol Meas

Medical Information Technology (MedIT), Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstr. 20, D-52074 Aachen, Germany.

Published: September 2021

. During launch and atmospheric re-entry in suborbital space flights, astronauts are exposed to high G-acceleration. These acceleration levels influence gas exchange inside the lung and can potentially lead to hypoxaemia. The distribution of air inside the lung can be monitored by electrical impedance tomography. This imaging technique might reveal how high gravitational forces affect the dynamic behavior of ventilation and impair gas exchange resulting in hypoxaemia.. We performed a trial in a long-arm centrifuge with ten participants lying supine while being exposed to +2, +4 and +6 G(chest-to-back acceleration) to study the magnitude of accelerations experienced during suborbital spaceflight.. First, the tomographic images revealed that the dorsal region of the lung emptied faster than the ventral region. Second, the ventilated area shifted from dorsal to ventral. Consequently, alveolar pressure in the dorsal area reached the pressure of the upper airways before the ventral area emptied completely. Finally, the upper airways collapsed and the end-expiratory volume increased. This resulted in ventral gas trapping with restricted gas exchange.. At +4 G, changes in ventilation distribution varied considerably between subjects, potentially due to variation in individual physical conditions. However, at +6 Gall participants were affected similarly and the influence of high gravitational conditions was pronounced.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6579/ac1c63DOI Listing

Publication Analysis

Top Keywords

gas exchange
12
monitored electrical
8
electrical impedance
8
impedance tomography
8
inside lung
8
high gravitational
8
upper airways
8
dynamic lung
4
lung behavior
4
high
4

Similar Publications

On October 11, 2018, in the Ulytau region of the Republic of Kazakhstan, the Soyuz-FG launch vehicle carrying a crewed MS-10 spacecraft failed. It resulted in the release into the fragile arid ecosystems of rocket propellants, i.e.

View Article and Find Full Text PDF

The present study was designed to highlight the ameliorative role of iron nanoparticles (FeNPs) against drought stress in spinach (Spinacia oleracea L.) plants. A pot experiment was performed in two-way completely randomize design with three replicates.

View Article and Find Full Text PDF

Objectives: A conservative oxygenation strategy is recommended in adult and pediatric guidelines for the management of acute respiratory distress syndrome to reduce iatrogenic lung damage. In the recently reported Oxy-PICU trial, targeting peripheral oxygen saturations (Spo2) between 88% and 92% was associated with a shorter duration of organ support and greater survival, compared with Spo2 greater than 94%, in mechanically ventilated children following unplanned admission to PICU. We investigated whether this benefit was greater in those who had severely impaired oxygenation at randomization.

View Article and Find Full Text PDF

Permeance-selectivity trade-offs are inherent to polymeric membranes. In fuel cells, thinner proton exchange membranes (PEMs) could enable higher proton conductance and increased power density with lower area-specific resistance (ASR), smaller ohmic losses, and lower ionomer cost. However, reducing thickness is accompanied by an increase in undesired species crossover harming performance and long-term efficiency.

View Article and Find Full Text PDF

Electrochemical CO reduction offers a promising method of converting renewable electrical energy into valuable hydrocarbon compounds vital to hard-to-abate sectors. Significant progress has been made on the lab scale, but scale-up demonstrations remain limited. Because of the low energy efficiency of CO reduction, we suspect that significant thermal gradients may develop in industrially relevant dimensions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!