Chromosome rearrangements, which are structural chromosomal abnormalities commonly found in human cancer, result from the misrejoining between two or more DNA double-strand breaks arising at different genomic regions. Consequently, chromosome rearrangements can generate fusion genes that promote tumorigenesis. The mechanisms of chromosome rearrangement have been studied using exogenous double-strand break inducers, such as radiation and nucleases. However, the mechanism underlying the occurrence of chromosome rearrangements in the absence of exogenous double-strand break-inducing stimuli is unclear. This study aimed to identify the major source of chromosome rearrangements and the DNA repair pathway that suppresses them. DNA repair factors that potentially suppress gene fusion were screened using The Cancer Genome Atlas dataset. In total, 22 repair factors whose expression levels were negatively correlated with the frequency of gene fusion were identified. More than 60% of these repair factors are involved in homologous recombination, a major double-strand break repair pathway. We hypothesized that DNA single-strand breaks are the source of double-strand breaks that lead to chromosome rearrangements. This study demonstrated that hydrogen peroxide (HO)-induced single-strand breaks gave rise to double-strand breaks in a replication-dependent manner. Additionally, HO induced the formation of RPA and RAD51 foci, which indicated that double-strand breaks derived from single-strand breaks were repaired through homologous recombination. Moreover, treatment with HO promoted the formation of radial chromosomes, a type of chromosome rearrangements, only upon the downregulation of homologous recombination factors, such as BRCA1 and CtIP. Thus, single-strand breaks are the major source of chromosome rearrangements when the expression of homologous recombination factors is downregulated.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbrc.2021.08.001 | DOI Listing |
J Cell Sci
January 2025
Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, 60208, USA.
Disrupted nuclear shape is associated with multiple pathological processes including premature aging disorders, cancer-relevant chromosomal rearrangements, and DNA damage. Nuclear blebs (i.e.
View Article and Find Full Text PDFGigascience
January 2025
Leibniz Institute for the Analysis of Biodiversity Change, Museum Koenig Bonn, 53113 Bonn, Germany.
Background: In this study, we present an in-depth analysis of the Eurasian minnow (Phoxinus phoxinus) genome, highlighting its genetic diversity, structural variations, and evolutionary adaptations. We generated an annotated haplotype-phased, chromosome-level genome assembly (2n = 50) by integrating high-fidelity (HiFi) long reads and chromosome conformation capture data (Hi-C).
Results: We achieved a haploid size of 940 megabase pairs (Mbp) for haplome 1 and 929 Mbp for haplome 2 with high scaffold N50 values of 36.
Nucleic Acids Res
January 2025
Laboratory of Genome Regeneration, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo113-0032, Japan.
Cell Genom
January 2025
Department of Cell and Molecular Biology, Karolinska Institute, 171 65 Stockholm, Sweden. Electronic address:
Newts have large genomes harboring many repeat elements. How these elements shape the genome and relate to newts' unique regeneration ability remains unknown. We present here the chromosome-scale assembly of the 20.
View Article and Find Full Text PDFBlood Adv
January 2025
Univeristy of Alabama at Birmingham, Birmingham, Alabama, United States.
Hepatosplenic T-cell lymphoma (HSTCL) is an aggressive mature T-cell lymphoma characterized by significant hepatosplenomegaly, bone marrow involvement, and minimal or no lymphadenopathy. Primarily affecting young adults, it is exceptionally rare in children and adolescents. This makes diagnosis and treatment particularly challenging for pathologists and pediatric oncologists.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!