La(OH)-modified canna biochar (CBC-La) was prepared by a coprecipitation method (dipping method), and its phosphate adsorption characteristics were investigated. The results show that the pseudo-second-order kinetics and the Langmuir model can be used to describe the adsorption process with a high level of accuracy. Adsorption equilibrium could be reached at 8 h, at which point the maximum adsorption capacity was shown to be 37.37 mg/g. CBC-La has excellent phosphate adsorption capacity in the middle to low concentrations (≤50 mg/L), and its removal rate can exceed 99 %. CBC-La also has wide pH adaptability (3-9) and a strongly selective adsorption performance. Notably, it can still maintain a removal rate of over 99.8 % in the presence of certain anions (NO, HCO, and CO), and the presence of NH has a synergistic effect on the adsorption process. Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) measurements demonstrate that the main mechanisms of CBC-La phosphate adsorption are electrostatic adsorption, ion exchange, ligand exchange and inner sphere complexation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2021.131773 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
School of Pharmacy, Weifang Medical University, Weifang 261053, Shandong PR China.
As one of the most promising means to repair diseased tissues, stem cell therapy with immense potential to differentiate into mature specialized cells has been rapidly developed. However, the clinical application of stem-cell-dominated regenerative medicine was heavily hindered by the loss of pluripotency during the long-term in vitro expansion. Here, a composite three-dimensional (3D) graphene-based biomaterial, denoted as GO-Por-CMP@CaP, with hierarchical pore structure (micro- to macropore), was developed to guide the directional differentiation of human umbilical cord MSCs (hucMSCs) into osteoblasts.
View Article and Find Full Text PDFSci Rep
January 2025
College of Civil Engineering, Liaoning Technical University, Fuxin, 123000, China.
The adsorption of phosphate in the collected water is crucial to alleviate the crisis of phosphorus resources, which is in line with the concept of green and sustainable development of resources. In this study, based on the calcium modification technology of pyrolysis combined with chemical modification, a new type of calcium modified coal gangue (CaMCG) was prepared by using coal gangue as raw material and calcium chloride as modifier for the removal of phosphate.The optimum preparation conditions of CaMCG were obtained by response surface test: m:m=1, calcination temperature 735℃, calcination time 135 min.
View Article and Find Full Text PDFWater Res
December 2024
Key Laboratory of Poyang Lake Environment and Resource Utilization, Engineering Research Center of Watershed Carbon Neutralization, Ministry of Education, School of Resource and Environment, Nanchang University, Nanchang 330031, China. Electronic address:
To effectively mitigate global eutrophication in lakes, regulating sedimentary phosphorus release remains a primary strategy. Enhancing the adsorption and stabilization performance of passivating agents is integral to addressing endogenous phosphorus pollution in aquatic systems. This study presents a novel aerogel with a high specific surface area (663.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul 04620, Republic of Korea. Electronic address:
The presence of cobalt ions (Co) and radionuclides (Co) in industrial and radioactive effluents pose serious threats to environmental ecosystems and human health. This paper presents the synthesis of dual-functional hydroxyapatite (HAp)-incorporated spherical carbon (SC) composite (HAp/SC) towards the selective adsorption of cobalt from wastewater and the utilization of the Co-adsorbed HAp/SC composite (Co- HAp/SC) as an electrocatalyst for the oxygen evolution reaction (OER). Herein, we prepared a series of HAp/SC composites by varying HAp weight percentages of 10 %, 20 %, 30 %, 40 %, and 50 %.
View Article and Find Full Text PDFWater Res X
May 2025
Integrated Science and Technology Research Center, Faculty of Technology and Environment, Prince of Songkla University, Phuket Campus, Kathu, Phuket 83120 Thailand.
This study rigorously evaluates the adsorption performance of the Cry-Ca-COS monolith for phosphate removal in a column operation mode. Characterization of the material both before and after exhaustion in a continuous flow system (column form) showed no difference compared to results from a batch system (tablet form). The XPS results indicated that the adsorption mechanism of phosphate on the Cry-Ca-COS column involved surface microprecipitation and ligand exchange (inner-sphere complexation).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!