Bivalent vaccination with NA1 and NA2 neuraminidase virus-like particles is protective against challenge with H1N1 and H3N2 influenza A viruses in a murine model.

Virology

Department of Microbiology and Immunology and Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, 30322, USA; Centers for Excellence in Influenza Research and Surveillance, Emory-UGA Center, Atlanta, GA, USA. Electronic address:

Published: October 2021

AI Article Synopsis

  • Neuraminidase (NA) is a key protein on influenza A viruses, and specific NA1-based virus-like particles (VLPs) have shown protective effects against certain strains.
  • Researchers produced NA2 VLPs from the A/Perth/16/2009 strain, which induced a strong immune response in mice, providing protection against lethal H3N2 virus but not H1N1.
  • Combination vaccination with both NA1 and NA2 VLPs resulted in effective protection against both H1N1 and H3N2 viruses, highlighting the potential for focusing on anti-NA responses in future flu vaccine development.

Article Abstract

Neuraminidase (NA) is the second most abundant glycoprotein on the surface of influenza A viruses (IAV). Neuraminidase type 1 (NA1) based virus-like particles (VLPs) have previously been shown to protect against challenge with H1N1 and H3N2 IAV. In this study, we produced neuraminidase type 2 (NA2) VLPs derived from the sequence of the seasonal IAV A/Perth/16/2009. Intramuscular vaccination of mice with NA2 VLPs induced high anti-NA serum IgG levels capable of inhibiting NA activity. NA2 VLP vaccination protected against mortality in a lethal A/Hong Kong/1/1968 (H3N2) virus challenge model, but not against lethal challenge with A/California/04/2009 (H1N1) virus. However, bivalent vaccination with NA1 and NA2 VLPs demonstrated no antigenic competition in anti-NA IgG responses and protected against lethal challenge with H1N1 and H3N2 viruses. Here we demonstrate that vaccination with NA VLPs is protective against influenza challenge and supports focusing on anti-NA responses in the development of future vaccination strategies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8479372PMC
http://dx.doi.org/10.1016/j.virol.2021.08.001DOI Listing

Publication Analysis

Top Keywords

challenge h1n1
12
h1n1 h3n2
12
na2 vlps
12
bivalent vaccination
8
vaccination na1
8
na1 na2
8
virus-like particles
8
influenza viruses
8
neuraminidase type
8
lethal challenge
8

Similar Publications

Spatiotemporal Dynamic Immunomodulation by Infection-Mimicking Gels Enhances Broad and Durable Protective Immunity Against Heterologous Viruses.

Adv Sci (Weinh)

January 2025

SKKU Advanced Institute of Nanotechnology (SAINT), Department of Nano Engineering, Department of Nano Science and Technology, School of Chemical Engineering, Biomedical Institute for Convergence at SKKU, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea.

Despite their safety and widespread use, conventional protein antigen-based subunit vaccines face significant challenges such as low immunogenicity, insufficient long-term immunity, poor CD8 T-cell activation, and poor adaptation to viral variants. To address these issues, an infection-mimicking gel (IM-Gel) is developed that is designed to emulate the spatiotemporal dynamics of immune stimulation in acute viral infections through in situ supramolecular self-assembly of nanoparticulate-TLR7/8a (NP-TLR7/8a) and an antigen with tannic acid (TA). Through collagen-binding properties of TA, the IM-Gel enables sustained delivery and enhanced retention of NP-TLR7/8a and protein antigen in the lymph node subcapsular sinus of mice for over 7 days, prolonging the exposure of vaccine components in both B cell and T cell zones, leading to robust humoral and cellular responses.

View Article and Find Full Text PDF

Background: The morbidity and mortality associated with influenza viruses are a significant public health challenge. Annual vaccination against circulating influenza strains reduces hospitalisations and increases survival rates but requires a yearly redesign of vaccines against prevalent subtypes. The complex genetics of influenza viruses with high antigenic drift create an ongoing challenge in vaccine development to address dynamic influenza epidemiology.

View Article and Find Full Text PDF

Phlorotannin-Rich Seaweed Extract Inhibits Influenza Infection.

Viruses

December 2024

Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L3 5RF, UK.

Seaweed-derived compounds are a renewable resource utilised in the manufacturing and food industry. This study focuses on an enriched seaweed extract (ESE) isolated from The ESE was screened for antiviral activity by plaque reduction assays against influenza A/Puerto Rico/8/1934 H1N1 (PR8), A/X-31 H3N2 (X31) and A/England/195/2009 H1N1 (Eng195), resulting in the complete inhibition of infection. Time of addition assays and FACS analysis were used to help determine the modes of action.

View Article and Find Full Text PDF

Cell-Cultured Influenza Vaccine Enhances IFN-γ+ T Cell and Memory T Cell Responses Following A/Victoria/2570/2019 IVR-215 (A/H1N1) Infection.

Vaccines (Basel)

December 2024

The Vaccine Bio Research Institute, College of Medicine, The Catholic University of Korea, Annex to Seoul Saint Mary Hospital, 222 Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea.

Background: Influenza remains a significant public health challenge, with vaccination being a substantial way to prevent it. Cell-cultured influenza vaccines have emerged to improve on the drawbacks of egg-based vaccines, but there are few studies focusing on T cell immunity with both types of vaccines. Therefore, we studied the following 2022-2023 seasonal influenza vaccines with a standard dose and high dose: cell-based (C_sd and C_hd) and egg-based (E_sd and E_hd) vaccines.

View Article and Find Full Text PDF

Standard-of-care influenza vaccines contain antigens that are typically derived from components of wild type (WT) influenza viruses. Often, these antigens elicit strain-specific immune responses and are susceptible to mismatch in seasons where antigenic drift is prevalent. Thanks to advances in viral surveillance and sequencing, influenza vaccine antigens can now be optimized using computationally derived methodologies and algorithms to enhance their immunogenicity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!