In this study, we utilize ATR-FTIR spectroscopy to investigate the structural damages in the cell membrane lipids and proteins as a result of the oxidative stress in abscopal liver tissue of rats either whole-body, cranially or lower limb irradiated as compared with sham-irradiated group. We also question whether the original irradiation region would influence the induction of the abscopal effect. The data present compelling evidence that an abscopal effect was induced in the liver tissue following both cranial and lower limb irradiations, marked by damage in the membrane-associated lipids and proteins. Lipid damage manifestation is evident by; 1) decrease in the lipid/protein ratio. 2) Degradation of lipid as marked by the decrease in the area ratio CH asymmetric/CH asymmetric stretching bands. 3) Increase in the carbonyl content evident by the increase in the band area ratio of carbonyl ester/lipid. 4) Increase in the degree of methylation as indicated by the increase in the band area ratio of CH/lipid. 5) Disorder in the phospholipid acyl chains marked by the shift in the CH asymmetric stretching and olefinic HCCH absorption bands. Protein damage was indicated by 1) Shifts in the position of amide I and amide II bands. 2) Decrease in the area ratio amide I/amide II. 3) Broadening in amide II band. Our data strongly suggest similar induction of the abscopal effect as a result of either cranial or lower limb irradiation, which means that the original irradiation region did not influence the induced abscopal effect in the examined system.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbamem.2021.183726 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!