The Bacterial Hsp90 Chaperone: Cellular Functions and Mechanism of Action.

Annu Rev Microbiol

Aix-Marseille Université, CNRS, Laboratoire de Bioénergétique et Ingénierie des Protéines, Institut de Microbiologie de la Méditerranée, 13009 Marseille, France; email:

Published: October 2021

Heat shock protein 90 (Hsp90) is a molecular chaperone that folds and remodels proteins, thereby regulating the activity of numerous substrate proteins. Hsp90 is widely conserved across species and is essential in all eukaryotes and in some bacteria under stress conditions. To facilitate protein remodeling, bacterial Hsp90 collaborates with the Hsp70 molecular chaperone and its cochaperones. In contrast, the mechanism of protein remodeling performed by eukaryotic Hsp90 is more complex, involving more than 20 Hsp90 cochaperones in addition to Hsp70 and its cochaperones. In this review, we focus on recent progress toward understanding the basic mechanisms of bacterial Hsp90-mediated protein remodeling and the collaboration between Hsp90 and Hsp70. We describe the universally conserved structure and conformational dynamics of these chaperones and their interactions with one another and with client proteins. The physiological roles of Hsp90 in and other bacteria are also discussed. We anticipate that the information gained from exploring the mechanism of the bacterial chaperone system will provide a framework for understanding the more complex eukaryotic Hsp90 system.

Download full-text PDF

Source
http://dx.doi.org/10.1146/annurev-micro-032421-035644DOI Listing

Publication Analysis

Top Keywords

protein remodeling
12
bacterial hsp90
8
hsp90
8
molecular chaperone
8
eukaryotic hsp90
8
bacterial
4
chaperone
4
hsp90 chaperone
4
chaperone cellular
4
cellular functions
4

Similar Publications

Targeting MAPK14 by Lobeline Upregulates Slurp1-Mediated Inhibition of Alternative Activation of TAM and Retards Colorectal Cancer Growth.

Adv Sci (Weinh)

January 2025

Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine in Prevention and Treatment of Tumor, The First Clinical College, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing, 210023, China.

Colorectal cancer (CRC) usually creates an immunosuppressive microenvironment, thereby hindering immunotherapy response. Effective treatment options remain elusive. Using scRNA-seq analysis in a tumor-bearing murine model, it is found that lobeline, an alkaloid from the herbal medicine lobelia, promotes polarization of tumor-associated macrophages (TAMs) toward M1-like TAMs while inhibiting their polarization toward M2-like TAMs.

View Article and Find Full Text PDF

Targeting immune cellular populations and transcription factors: unraveling the therapeutic potential of JQF for NAFLD.

Front Immunol

January 2025

Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.

Background: Non-alcoholic fatty liver disease (NAFLD) constitutes the most prevalent chronic liver disease worldwide. Progression to non-alcoholic steatohepatitis (NASH), the immune cell reservoir within the liver undergoes remodeling, exacerbating liver inflammation and potentially leading to liver fibrosis. Jiangtang Qingre Formula (JQF) is an effective prescription for the clinical treatment of NAFLD.

View Article and Find Full Text PDF

Background: Skin innervation is very important for normal wound healing, and receptor activity-modifying protein 1 (RAMP1) has been reported to modulate calcitonin gene-related peptide (CGRP) receptor function and thus be a potential treatment target. This study aimed to elucidate the intricate regulatory effect of RAMP1 on skin fibroblast function, thereby addressing the existing knowledge gap in this area.

Methods: Immunohistochemical staining and immunofluorescence (IF) staining were used to measure the dynamic changes in the expression of RAMP1 and α-smooth muscle actin (α-SMA) in skin wound tissue in mice.

View Article and Find Full Text PDF

Vitronectin regulates lung tissue remodeling and emphysema in chronic obstructive pulmonary disease.

Mol Ther

January 2025

Immune Health, Hunter Medical Research Institute and The University of Newcastle, Newcastle, New South Wales, Australia; Centre for Inflammation, Centenary Institute and University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, New South Wales, Australia. Electronic address:

Vitronectin (VTN) is an important extracellular matrix protein in tissue remodeling, but its role in COPD is unknown. We show that VTN regulates tissue remodeling through urokinase plasminogen activator (uPA) signaling pathway in COPD. In human COPD airways and bronchoepithelial cells and the airways of mice with cigarette smoke (CS)-induced experimental COPD, VTN protein was not changed, but downstream uPA signaling was altered (increased plasminogen activator inhibitor-1, uPAR) that induced collagen and airway remodeling.

View Article and Find Full Text PDF

Serum HDL and their subfractions are impaired in multisystem inflammatory syndrome in children (MIS-C).

J Transl Med

January 2025

Dipartimento di Pediatria Generale e d'Urgenza, AORN Santobono-Pausilipon, Naples, Italy.

Background: Multisystem inflammatory syndrome in children (MIS-C) is a severe post-COVID condition due to a delayed hyperimmune response to SARS-CoV-2. High-density lipoproteins (HDL) are pivotal players in inflammatory and immune modulation through the remodeling of their subfractions.

Methods: This study aimed to evaluate serum levels of cholesterol, HDL, and HDL subfractions (HDL-SUB) to define their role in the pathogenesis of MIS-C and their potential use as biomarkers of this condition.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!