The coronavirus disease 2019 (COVID-19) has become a severe worldwide health emergency and is spreading at a rapid rate. Segmentation of COVID lesions from computed tomography (CT) scans is of great importance for supervising disease progression and further clinical treatment. As labeling COVID-19 CT scans is labor-intensive and time-consuming, it is essential to develop a segmentation method based on limited labeled data to conduct this task. In this paper, we propose a self-ensembled co-training framework, which is trained by limited labeled data and large-scale unlabeled data, to automatically extract COVID lesions from CT scans. Specifically, to enrich the diversity of unsupervised information, we build a co-training framework consisting of two collaborative models, in which the two models teach each other during training by using their respective predicted pseudo-labels of unlabeled data. Moreover, to alleviate the adverse impacts of noisy pseudo-labels for each model, we propose a self-ensembling strategy to perform consistency regularization for the up-to-date predictions of unlabeled data, in which the predictions of unlabeled data are gradually ensembled via moving average at the end of every training epoch. We evaluate our framework on a COVID-19 dataset containing 103 CT scans. Experimental results show that our proposed method achieves better performance in the case of only 4 labeled CT scans compared to the state-of-the-art semi-supervised segmentation networks.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8904133PMC
http://dx.doi.org/10.1109/JBHI.2021.3103646DOI Listing

Publication Analysis

Top Keywords

unlabeled data
16
co-training framework
12
covid lesions
8
limited labeled
8
labeled data
8
predictions unlabeled
8
data
6
scans
5
self-ensembling co-training
4
framework
4

Similar Publications

Supervised Cross-Modal Retrieval (SCMR) achieves significant performance with the supervision provided by substantial label annotations of multi-modal data. However, the requirement for large annotated multi-modal datasets restricts the use of supervised cross-modal retrieval in many practical scenarios. Active Learning (AL) has been proposed to reduce labeling costs while improving performance in various label-dependent tasks, in which the most informative unlabeled samples are selected for labeling and training.

View Article and Find Full Text PDF

SARS-CoV-2-infected individuals have reported a diverse collection of persistent and often debilitating symptoms commonly referred to as long COVID or post-acute sequelae of SARS-CoV-2 (PASC). Identifying PASC and its subphenotypes is challenging because available data are "negative-unlabeled" as uninfected individuals must be PASC negative, but those with prior infection have unknown PASC status. Moreover, feature selection among many potentially informative characteristics can facilitate reaching a concise and easily interpretable PASC definition.

View Article and Find Full Text PDF

Investigating whether alcohol is transformed to norepinephrine or dopamine in the mouse brain.

Pharmacol Rep

March 2025

Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland.

Background: A number of rodent studies have investigated the effects of alcohol (ethanol) administration on the catecholaminergic neurotransmitters, norepinephrine (NE) and dopamine (DA). These studies suggest that presentation of alcohol to mice or rats can alter brain levels of NE and DA, in various subregions. Other studies have presented the hypothesis that there may be an unidentified pathway in rodents, and other organisms, that actually transforms ethanol to NE or DA.

View Article and Find Full Text PDF

Drug-drug interactions influence drug efficacy and patient prognosis, providing substantial research value. Some existing methods struggle with the challenges posed by sparse networks or lack the capability to integrate data from multiple sources. In this study, we propose MOLGAECL, a novel approach based on graph autoencoder pretraining and molecular graph contrastive learning.

View Article and Find Full Text PDF

A foundation model for generalizable cancer diagnosis and survival prediction from histopathological images.

Nat Commun

March 2025

Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.

Computational pathology, utilizing whole slide images (WSIs) for pathological diagnosis, has advanced the development of intelligent healthcare. However, the scarcity of annotated data and histological differences hinder the general application of existing methods. Extensive histopathological data and the robustness of self-supervised models in small-scale data demonstrate promising prospects for developing foundation pathology models.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!