Fouling growth in brackish water distribution systems (BWDS), especially calcium-silica fouling, is inevitable issue in brackish water desalination, chemical and agricultural industry, eventually threaten the cleaner production process and environment. Magnetic Field (MF) has been a greener and effective technology to control calcium carbonate fouling. However, the effects of MF on composite calcium-silica fouling are still elusive. Therefore, this paper assessed the effect of MF on calcium and silica fouling. We found that MF not only significantly reduce the calcium carbonate fouling, but also obviously decreased the silica fouling. The MF reduced the calcite fouling reached 38.2%-64.3% by changing water quality parameters to trigger the transformation rate of CaCO crystal from compact calcite to looser aragonite, as well as increase the unit-cell parameters and chemical bond lengths of calcite and aragonite. The MF also decreased the content of silica fouling (silica and silicate) reached 22.4-46.3% by reducing the concentration of soluble silica and accelerating the flocculation settlement to form large size solid particles in BW. Furthermore, MF broke the synergistic interactions among calcium and silica fouling. In addition, the anti-fouling ability of permanent MF was higher by 12.3-35.1% than electric MF. Overall, these findings demonstrate that MF is an effective and chemical-free technology to control calcium-silica fouling in BWDS, and provide a new perspective for sustainable application of brackish water.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2021.148900 | DOI Listing |
Int J Biol Macromol
December 2024
Izmir Institute of Technology, Department of Chemical Engineering, Gulbahce, Urla 35430, Izmir, Turkey.
This study aims to improve the properties of polyether sulfone (PES) membranes by using an innovative composite filler. Pistachio shell-derived activated carbon (PSAC) was initially synthesized via chemical activation, followed by surface modification with ZIF-8 and ZIF-67. Subsequently, modified membranes with varying weight percentages of this composite were fabricated using the phase inversion method.
View Article and Find Full Text PDFChemosphere
November 2024
Centre for Research in Nanotechnology and Science, Indian Institute of Technology Bombay, Mumbai, MH, 400076, India; Water Innovation Center: Technology Research & Education, Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai, MH, 400076, India; Nanostructures Engineering and Modeling Laboratory, Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai, MH, 400076, India. Electronic address:
Industrial wastewater, despite undergoing primary and secondary treatments with conventional methods, continues to pose challenges due to the presence of multiple contaminants. Membrane separation has emerged as an effective solution to streamline the treatment process, yet it often results in surface fouling. This study introduces a single platform designed for simultaneous removal of dyes, oils, and proteins during the tertiary treatment stage, thereby eliminating the need for multiple separation steps.
View Article and Find Full Text PDFMikrochim Acta
September 2024
MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350116, China.
A phenyl-modified silica isoporous membrane (Ph-SIM) was prepared on the indium-tin-oxide (ITO) electrode using the electrochemically assisted self-assembly (EASA) method. The resulting Ph-SIM preserved vertically ordered nanochannels while exhibiting outstanding hydrophobicity due to the incorporation of phenyl groups within the nanochannels. As a result, the Ph-SIM/ITO sensor exhibited a remarkable affinity for PCNB extraction through hydrophobic interactions, leading to high detection sensitivity.
View Article and Find Full Text PDFMacromol Rapid Commun
January 2025
Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China.
Biomimetic slippery liquid-infused porous surfaces (SLIPS) have emerged as a promising solution to solve the limitations of superhydrophobic surfaces, such as inadequate durability in corrosion protection and a propensity for frosting. However, the challenge of ensuring strong, lasting adhesion on diverse materials to enhance the durability of the lubricant layer remains. The research addresses this by leveraging amyloid phase-transitioned lysozyme (PTL) as an adhesive interlayer, conferring stable attachment of SLIPS across a variety of substrates, including metals, inorganics, and polymers.
View Article and Find Full Text PDFIn this work the bacteria and fungi were allowed to interact with quartz-based biosensor devices under different flow rates, with and without an anti-fouling coating. These experiments were conducted in order to determine if the level of fouling observed was affected by the flow rate. The biosensor used was an ultra-high frequency acoustic wave device (EMPAS) for investigation of device surface initial interaction of or under flow of PBS buffer at flow rates between 50 and 200 μL min.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!