Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Most marine antifouling coatings rely on the release of toxic biocides to prevent fouling organisms from attaching, causing environmental pollution. This work proposes a biocide-free environmentally friendly marine antifouling strategy. Slippery-liquid-infused electrostatic flocking surfaces (S-EFSs) were prepared by combining electrostatic flocking and slippery liquid infusion. They exhibited complete mussel resistance after comparing adhesion to the surface of different materials in the laboratory. In addition, the unique surface morphology including lubricant was found to be crucial to their antifouling performance. Real-time polymerase chain reaction showed that different surfaces significantly affected the gene-expression levels of the mussels' foot proteins, where higher levels on S-EFSs meant that the mussels tried to secrete more proteins but they failed to adhere. Moreover, a 148-day field test showed that S-EFSs can resist not only mussels but also tubeworms, tunicates, and barnacles, and the total fouling area decreased by more than 50% compared to control samples. Notably, the maturity of electrostatic flocking technology and the simplicity of the modification steps used endow this strategy with the potential to significantly reduce the economic loss caused by marine biofouling in practical applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.1c01156 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!