A new oxo-bridged chromium-molybdenum heterometallic complex, O-CrMoHC ([Cr(MoO)O(OAc)(DMF)]·2DMF), was synthesized by using a simple solvothermal reaction. In this complex, the octahedrally coordinated Cr(III) and tetrahedrally coordinated Mo(VI) metal centers are bridged by oxo ligands. O-CrMoHC has in-plane π-conjugation systems, which are interconnected by noncoordinating DMF molecules. The crystals show anisotropic conductivity with respect to the crystal planes, and theoretical calculations were used to study their origins. The O-CrMoHC single crystals exhibited that a relatively high electrical conductivity with an average value of 5.37 × 10 S/cm was observed along the [01-1] direction, but the current level was very low along the [100] direction. This is the first report of anisotropic conductivity observed in the single crystal of a monomeric heterometallic complex.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.inorgchem.1c01618DOI Listing

Publication Analysis

Top Keywords

heterometallic complex
12
electrical conductivity
8
anisotropic conductivity
8
anisotropic electrical
4
conductivity
4
conductivity single-crystalline
4
single-crystalline oxo-bridged
4
oxo-bridged crmo
4
crmo heterometallic
4
complex
4

Similar Publications

Ligands featuring a 1,1'-bis(donor)ferrocene motif can adopt various binding modes. Among them, the κ binding mode, which involves interaction between the iron center of the ferrocene unit and the transition metal is the most unique. Although various examples highlight the interaction itself, the exact quantification of its strength remains uncertain.

View Article and Find Full Text PDF

A survey of the literature and the Cambridge Structural Database reveals thirty nine -butylcalix[8]arene-supported transition (3d, limited to V-Cu) and lanthanide metal complexes ranging in nuclearity from one to eighteen, twenty of which are homometallic and nineteen of which are heterometallic. We provide a review of the coordination chemistry of these complexes, including our own work in the area. We also provide our thoughts and perspectives on the common structural themes observed, identify gaps in knowledge and evaluate how that may inform and direct future synthetic efforts.

View Article and Find Full Text PDF

Ag/Cu bimetallic clusters have been widely reported, but synthesis of such clusters simple self-assembly of heterometallic ions in air remains challenging due to the susceptibility of Cu ions to oxidation. In this study, protected by the phenylacetylene auxiliary ligand, we utilized [Cu(CHCN)]PF in conjunction with the (PrSAg) polymer to form Ag(I)-Cu(I) oligomer precursors, serving as the starting point for constructing a new [AgCu(PrS)(DPPM)](PF) cluster (DPPM = bis(diphenylphosphino)methane, Ag11-xCux, = 5-9). When the (PrSAg) precursor was replaced by (BuSAg), another cluster [AgCuS(BuS)(CHCN)](CHOH)(HO)(PF) (Ag21Cu4) was obtained.

View Article and Find Full Text PDF

A relatively unexplored approach in heterometallic chemistry of transition metals and lanthanides has been developed toward the controlled synthesis of a new family of linear heterotrinuclear Ln(III)-Pd(II)-Ln(III) complexes with the general formula [LnPd(pao)(NO)(MeOH)(HO)]·[Pd(pao)], where Ln = Dy (2), Gd (3), Er (4) and Yb (5). This strategy was based on the diamagnetic 'metalloligand' [Pd(pao)] (1), where pao is the anion of 2-pyridinealdoxime, containing two dangling oximate O-atoms which were to each other and available for binding with oxophilic lanthanide ions. Because of their -configuration, the [Pd(pao)] 'metalloligand' was able to direct the binding of two {Ln(NO)(MeOH)(HO)} units on opposite sites, thus yielding the reported trinuclear {Ln-Pd-Ln} clusters.

View Article and Find Full Text PDF

Ligands combining two lateral bis-pyridyl-phosphonated-pyclens were synthesized, using a flexible linear pegylated linker (L2) or a bulkier K22 crown-ether (L3). A functionalized pyridyl-phosphonated-pyclen (L1) was also prepared as a mononuclear analogue. Coordination behavior of lanthanide cations was studied via NMR titration with Lu for L1, and UV/Vis and luminescence spectroscopy with Yb for L2/L3.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!