A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Nanoscale Nickel-Based Thin Films as Highly Conductive Electrodes for Dielectric Elastomer Applications with Extremely High Stretchability up to 200. | LitMetric

This paper presents on electromechanical characterization of thin film nickel-based wrinkled electrodes for dielectric elastomer (DE) applications. The investigation of a sandwich composed of a very soft and flexible elastomer carrying an ultrathin metallic electrode, together with its prestretch-dependent wrinkled structure of the electrode, facilitates the understanding of some of its interesting properties. Compared to conventional screen-printed carbon black electrodes, nickel-based thin film electrodes offer an ohmic resistance that is about 2 orders of magnitude lower. This remarkable feature makes it an advantageous electrode material alternative for the development of energy-efficient and high-frequency DE applications. Ultrathin (10-20 nm) layers are sputter deposited as electrodes onto either biaxially or, under pure-shear conditions, uniaxially prestretched silicone membranes. After the sputtering process, the membranes are allowed to relax whereby wrinkled out-of-plane buckled surfaces are obtained. With an initial resistance smaller than 400 Ω/square and a strong adhesion to the silicone, some electrode configurations are able to withstand strains up to 200% while remaining electrically conductive. A linear dependence of the capacitance on strain is revealed, as well as a long-term stability over 10 million cycles of mechanical stretching. All investigated thin film configurations of nickel and nickel-carbon films are suitable as compliant electrodes for DE actuators, as demonstrated by measuring the force characteristics with and without a high voltage. An increased level of prestretch shifts the resistance threshold of the electrode layers to even higher strain levels. In general, the best performance is achieved with pure metallic electrodes deposited on biaxially prestretched silicone membranes.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.1c10686DOI Listing

Publication Analysis

Top Keywords

thin film
12
nickel-based thin
8
electrodes dielectric
8
dielectric elastomer
8
elastomer applications
8
prestretched silicone
8
silicone membranes
8
electrodes
7
electrode
5
nanoscale nickel-based
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!