This study demonstrated that the aberrant transcription of DvGW2 contributed to the increased grain width and thousand-grain weight in wheat-Dasypyrum villosum T6VS·6DL translocation lines. Due to the high immunity to powdery mildew, Dasypyrum villosum 6VS has been one of the most successful applications of the wild relatives in modern wheat breeding. Along with the desired traits, side-effects could be brought when large alien chromosome fragments are introduced into wheat, but little is known about effects of 6VS on agronomic traits. Here, we found that T6VS·6DL translocation had significantly positive effects on grain weight, plant heightand spike length, and small negative effects on total spikelet number and spikelet compactness using recipient and wheat-D. villosum T6VS·6DL allohexaploid wheats, Wan7107 and Pm97033. Further analysis showed that the 6VS segment might exert direct genetic effect on grain width, then driving the increase of thousand-grain weight. Furthermore, comparative transcriptome analysis identified 2549 and 1282 differentially expressed genes (DEGs) and 2220 and 1496 specifically expressed genes (SEGs) at 6 days after pollination (DAP) grains and 15 DAP endosperms, respectively. Enrichment analysis indicated that the process of cell proliferation category was over-represented in the DEGs. Notably, two homologous genes, TaGW2-D1 and DvGW2, were identified as putative candidate genes associated with grain weight and yield. The expression analysis showed that DvGW2 had an aberrant expression in Pm97033, resulting in significantly lower total expression level of GW2 than Wan7107, which drives the increase of grain weight and width in Pm97033. Collectively, our data indicated that the compromised expression of DvGW2 is critical for increased grain width and weight in T6VS·6DL translocation lines.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00122-021-03934-8DOI Listing

Publication Analysis

Top Keywords

grain width
16
increased grain
12
translocation lines
12
t6vs·6dl translocation
12
grain weight
12
homologous genes
8
contributed increased
8
weight wheat-dasypyrum
8
wheat-dasypyrum villosum
8
thousand-grain weight
8

Similar Publications

Dissimilar laser welding of martensitic AISI 1060 carbon steel and Duplex Stainless Steel 2205 was performed based on an experimental and numerical study. The experiments were then conducted based on central composite design experiments (CCD) and analyzed via the response surface methodology (RSM) by considering the effect of laser welding process parameters (incident laser power, speed of welding, nozzle distance and deviation of laser beam) on the weld joint characterization. The experimental results showed that the laser power had a remarkable effect on the melt pool depth.

View Article and Find Full Text PDF

The husk leaf of maize (Zea mays) encases the ear as a modified leaf and plays pivotal roles in protecting the ear from pathogen infection, translocating nutrition for grains and warranting grain yield. However, the natural genetic basis for variation in husk leaf width remains largely unexplored. Here, we performed a genome-wide association study for maize husk leaf width and identified a 3-bp InDel (insertion/deletion) in the coding region of the nitrate transporter gene ZmNRT2.

View Article and Find Full Text PDF

Genetic Diversity, Association, and Path Coefficient Analyses of Sorghum [ (L.) Monech] Genotypes.

Scientifica (Cairo)

December 2024

Department of Plant Breeding, RAISE-FS, Stichting Wageningen Research (SWR) Ethiopia, Hawassa Liaison Office, Hawassa, Ethiopia.

For sustainable genetic improvement of crops like sorghum, assessing genetic variability and knowing the nature and extent of the association between grain yield and yield-related traits is a prerequisite. However, there needs to be sufficient information about the genetic variability study as well as yield-related trait correlation and path coefficient analysis for sorghum accessions, especially those from southern Ethiopia. Hence, this field experiment assessed genetic variability, determined the nature and extent of phenotypic-genetic correlation, and analyzed the path coefficients among 17 quantitative traits.

View Article and Find Full Text PDF

Tef [ (Zucc.) Trotter] is the major staple crop for millions of people in Ethiopia and Eritrea and is believed to have been domesticated several thousand years ago. Tef has the smallest grains of all the cereals, which directly impacts its productivity and presents numerous challenges to its cultivation.

View Article and Find Full Text PDF

Background: Rice, a staple food for over half of the global population, exhibits significant diversity in grain shape characteristics, which impact not only appearance and milling quality but also grain weight and yield. Identifying genes and loci underlying these traits is crucial for improving rice breeding programs. Previous studies have identified multiple quantitative trait loci (QTLs) and genes regulating grain length, width, and length-width ratio; however, further investigation is necessary to elucidate their regulatory pathways and their practical application in crop improvement.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!