In rainbow trout, dietary carbohydrates are poorly metabolized compared with other macronutrients. One prevalent hypothesis suggests that high dietary amino acid levels could contribute to the poor utilization of carbohydrates in trout. In mammals, alanine is considered an important gluconeogenic precursor, but has recently been found to stimulate AMP-activated protein kinase (AMPK) to reduce glucose levels. In trout, the effect of alanine on glucose flux is unknown. The goal of this study was to determine the effects of 4 h exogenous alanine infusion on glucose metabolism in rainbow trout. Glucose flux, and the rate of glucose appearance (Ra) and disposal (Rd) were measured in vivo. Key glycolytic and gluconeogenic enzyme expression and activity, and cell signaling molecules relevant to glucose metabolism were assessed in the liver and muscle. The results show that alanine inhibits glucose Ra (from 13.2±2.5 to 7.3±1.6 μmol kg-1 min-1) and Rd (from 13.2±2.5 to 7.4±1.5 μmol kg-1 min-1) and the slight mismatch between Ra and Rd caused a reduction in glycemia, similar to the effects of insulin in trout. The reduction in glucose Rd can be partially explained by a reduction in glut4b expression in red muscle. In contrast to mammals, trout alanine-dependent glucose-lowering effects did not involve hepatic AMPK activation, suggesting a different mechanistic basis. Interestingly, protein kinase B (AKT) activation increased only in muscle, similar to effects observed in insulin-infused trout. We speculate that alanine-dependent effects were probably mediated through stimulation of insulin secretion, which could indirectly promote alanine oxidation to provide the needed energy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1242/jeb.232918 | DOI Listing |
Proteomes
November 2024
Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-865, Japan.
Sous vide, a cooking method that involves vacuum-sealed fish at low temperatures, yields a uniquely tender, easily flaked texture. Previous research on sous-vide tenderization has focused on thermal protein denaturation. On the other hand, the contribution of proteases, activated at low temperatures in fish meat, has been suggested.
View Article and Find Full Text PDFMar Drugs
December 2024
Department of Biological Sciences Ålesund, Norwegian University of Science and Technology, 6009 Ålesund, Norway.
The use of fish rest raw material for the production of fish protein hydrolysates (FPH) through enzymatic hydrolysis has received significant interest in recent decades. Peptides derived from fish proteins are known for their enhanced bioactivity which is mainly influenced by their molecular weight. Studies have shown that novel technologies, such as high-pressure processing (HPP), can effectively modify protein structures leading to increased biological activity.
View Article and Find Full Text PDFMar Drugs
December 2024
Department of Food Technology, Marine Research Institute (CSIC), Eduardo Cabello 6, 36208 Vigo, Spain.
A new antioxidant lipid (AL) was synthesized from rainbow trout () belly oil and cold-pressed maqui (CPM) ( (Mol.) Stuntz) seed oil via enzymatic interesterification using in supercritical CO medium. A Box-Behnken design with 15 experiments was employed, with the independent variables being the following: belly oil/CPM oil ratio (10/90, 50/50, and 90/10, /), supercritical CO temperature (40.
View Article and Find Full Text PDFFood Sci Nutr
December 2024
Department of Pathobiology, Faculty of Veterinary Medicine Bu-Ali Sina University Hamedan Iran.
In this study, chitosan (C)-polyvinyl alcohol (P) edible film containing bio-fabricated nanosilver particles (nAg) (as antimicrobial agent) and beetroot peel extract (BRPE) (as antioxidant agent and pH indicator) was used as spoilage indicator in cold-stored rainbow trout fillets. DPPH (2,2-diphenyl-1-picrylhydrazyl) radical scavenging activity (43.02%), reducing power (2.
View Article and Find Full Text PDFZygote
December 2024
Division of Aquatic Environmental Management, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India.
Rainbow trout () is a promising cultivable fish species with significant potential for expansion. As a cold-water fish belonging to the Salmonidae family, it requires an optimal temperature range of 10-15°C for optimal growth. This study explores a method for producing sterile rainbow trout with maximum survival rates by using heat shock treatment to enhance growth characteristics and improve aquaculture practices.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!