Polyamine uptake transporter (PUT) plays important roles in polyamine homeostasis, but knowledge regarding PUT family genes in sweet orange (Citrus sinensis) remains elusive. Herein, our study aimed to perform a genome-wide identification of the PUT gene family in C. sinensis. A total of eight putative PUT genes (CsPUT1-CsPUT8) were identified in the sweet orange genome and distributed on three chromosomes. The CsPUT genes were divided into two major groups according to the phylogenetic tree analysis, with high similarities in protein domains and gene structure organization. The CsPUT genes were differentially expressed in different tissues, with the highest transcript levels being in the flowers and roots. Interestingly, the CsPUT genes were significantly induced by polyamines, putrescine, spermidine and spermine, indicating that CsPUT were possibly associated with intracellular polyamine transport and uptake. In addition, CsPUT showed differential expression in callus treated with ABA, cold, salt or osmotic shock. CsPUT4 was selected as a candidate for functional analysis of PUT. Overexpression of CsPUT4 elevated endogenous polyamine content and led to enhanced cold tolerance in transgenic callus cultures. Overall, these data provide valuable information for better understanding the potential biological functions of PUT genes in future.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/plb.13302 | DOI Listing |
Food Chem
January 2025
College of Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China. Electronic address:
This study aimed to evaluate the potential of pH-driven assembled soy peptide nanoparticle (SPN) to prepare high internal phase emulsions (HIPEs) containing sweet orange essential oil (SOEO), and the effects of SPN concentration and oil phase fraction on the formation, stability and flavor release characteristics were investigated. Results showed that stable HIPEs with excellent self-supporting state were successfully fabricated at relative high SPN concentrations (0.5-3.
View Article and Find Full Text PDFMicrob Cell Fact
January 2025
Botany and Microbiology Department , Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt.
Oleaginous yeasts are considered promising sources for lipid production due to their ability to accumulate high levels of lipids under appropriate growth conditions. The current study aimed to isolate and identify oleaginous yeasts having superior ability to accumulate high quantities of lipids; and enhancing lipid production using response surface methodology and repeated-batch fermentation. Results revealed that, twenty marine oleaginous yeasts were isolated, and the most potent lipid producer isolate was Candida parapsilosis Y19 according to qualitative screening test using Nile-red dye.
View Article and Find Full Text PDFMol Breed
January 2025
Engineering Research Center of Education Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, College of Horticulture, Hunan Agricultural University, Changsha, 410128 China.
Unlabelled: Citrus canker is a devastating disease caused by subsp. (), which secretes the effector PthA4 into host plants to trigger transcription of the susceptibility gene , resulting in pustule formation. However, the molecular mechanism underlying CsLOB1-mediated susceptibility to remains elusive.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Lab of Soil Ecosystem Health and Regulation, Fujian Province University (Fujian Agriculture and Forestry University), Fuzhou 350002, China. Electronic address:
Excessive copper (Cu) of rhizosphere inhibited the growth and development of citrus seedlings. Lignin deposition on the cell wall promotes plant Cu tolerance. However, the lignin biosynthesis in citrus leaves and roots that respond to Cu toxicity is not fully understood.
View Article and Find Full Text PDFJ Perianesth Nurs
January 2025
Medical Surgical Nursing Department, School of Nursing, University of Sao Paulo, Sao Paulo, Brazil; JBI Brazilian Affiliated Center, School of Nursing, University of Sao Paulo, Sao Paulo, Brazil.
Purpose: To analyze available evidence in the literature on the effect of aromatherapy for the management of postoperative pain in the postanesthesia care unit (PACU).
Design: Systematic review according to the Joanna Briggs Institute (JBI) model and Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) statement.
Methods: The search was carried out in August 2023, using descriptors and keywords, in the Cumulative Index to Nursing and Allied Health Literature, Latin American and Caribbean Literature in Health Sciences, Cochrane Central Register of Controlled Trials, Excerpta Medica Database, PUBMED, Scopus, Virtual Health Library, Google Scholar, CAPES, BDTD, and ProQuest portals of theses and dissertations, with no language restrictions or time limit.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!