Over the last decade, upconversion nanoparticles (UCNP) have been widely investigated in nanomedicine due to their high potential as imaging agents in the near-infrared (NIR) optical window of biological tissues. Here, we successfully develop active targeted UCNP as potential probes for dual NIR-NIR fluorescence and radioactive-guided surgery of prostate-specific membrane antigen (PSMA)(+) prostate cancers. We designed a one-pot thermolysis synthesis method to obtain oleic acid-coated spherical NaYF:Yb,Tm@NaYF core/shell UCNP with narrow particle size distribution (30.0 ± 0.1 nm, as estimated by SAXS analysis) and efficient upconversion luminescence. Polyethylene glycol (PEG) ligands bearing different anchoring groups (phosphate, bis- and tetra-phosphonate-based) were synthesized and used to hydrophilize the UCNP. DLS studies led to the selection of a tetra-phosphonate PEG ligand affording water-dispersible UCNP with sustained colloidal stability in several aqueous media. PSMA-targeting ligands (, glutamate-urea-lysine derivatives called KuEs) and fluorescent or radiolabelled prosthetic groups were grafted onto the UCNP surface by strain-promoted azide-alkyne cycloaddition (SPAAC). These UCNP, coated with 10 or 100% surface density of KuE ligands, did not induce cytotoxicity over 24 h incubation in LNCaP-Luc or PC3-Luc prostate cancer cell lines or in human fibroblasts for any of the concentrations evaluated. Competitive binding assays and flow cytometry demonstrated the excellent affinity of UCNP@KuE for PSMA-positive LNCaP-Luc cells compared with non-targeted UCNP@COH. Furthermore, the binding of UCNP@KuE to prostate tumour cells was positively correlated with the surface density of PSMA-targeting ligands and maintained after I-radiolabelling. Finally, a preliminary biodistribution study in LNCaP-Luc-bearing mice demonstrated the radiochemical stability of non-targeted [I]UCNP paving the way for future assessments.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d1tb00777gDOI Listing

Publication Analysis

Top Keywords

prostate-specific membrane
8
membrane antigen
8
upconversion nanoparticles
8
prostate cancer
8
psma-targeting ligands
8
surface density
8
ucnp
7
synthesis preliminary
4
preliminary evaluation
4
evaluation prostate-specific
4

Similar Publications

Purpose: Lutetium-177 Prostate-specific membrane antigen (Lu-PSMA) radioligand therapy is EMA-approved for metastatic castration resistant prostate cancer (mCRPC) after androgen receptor pathway inhibition (ARPI) and taxan-based chemotherapy. However, its effect in taxan-naïve patients is under current investigation.

Methods: We relied on the FRAMCAP database to elaborate Lu-PSMA therapy outcomes of progression-free (PFS) and overall (OS) in taxan-naïve mCRPC patients after previous ARPI treatment.

View Article and Find Full Text PDF

Advances in Preclinical Research of Theranostic Radiopharmaceuticals in Nuclear Medicine.

ACS Appl Mater Interfaces

January 2025

State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, P. R. China.

Theranostics of nuclear medicine refers to the combination of radionuclide imaging and internal irradiation therapy, which is currently a research hotspot and an important direction for the future development of nuclear medicine. Radiopharmaceutical is a vital component of nuclear medicine and serves as one of the fundamental pillars of molecular imaging and precision medicine. At present, a variety of radiopharmaceuticals have been developed for various targets such as fibroblast activation protein (FAP), prostate-specific membrane antigen (PSMA), somatostatin receptor 2 (SSTR2), C-X-C motif chemokine receptor 4 (CXCR4), human epidermal growth factor-2 (HER2), and integrin αvβ, and some of them have been successfully applied in clinical practice.

View Article and Find Full Text PDF

Background: To examine the feasibility and safety of the SENSEI drop-in gamma probe for robot-assisted, prostate-specific membrane antigen (PSMA)-radioguided salvage surgery (RGS) in lymph node or local oligorecurrent prostate cancer (PCa), detected via PSMA positron emission tomography/computed tomography (PET/CT).

Methods: The first thirteen patients with pelvic oligorecurrent PCa who underwent [Tc]Tc-PSMA-I&S RGS using the SENSEI drop-in gamma probe at the Martini-Klinik (February-June 2024) were retrospectively analyzed. Radioactivity measurements in counts per second (CPS) as absolute values or ratios (CPS of tumor specimens/mean CPS from the patients' benign tissues) were correlated with preoperative imaging and pathological findings (benign/malignant, lesion size).

View Article and Find Full Text PDF

Here, we describe the case of a 74-year-old male patient with a high-risk prostate carcinoma who underwent positron-emission tomography/computed tomography (PET/CT) with [Ga]Ga-prostate-specific membrane antigen ([Ga]Ga-PSMA-11) for staging. [Ga]Ga-PSMA-11 PET/CT detected an extensive area of increased tracer uptake at the prostatic level, involving both lobes. Additionally, a rounded lesion approximately 4 cm in diameter was identified in the celiac region adjacent to the stomach, exhibiting moderate tracer uptake.

View Article and Find Full Text PDF

Understanding the molecular mechanism of inhibitor binding to prostate-specific membrane antigen (PSMA) is of fundamental importance for designing targeted drugs for prostate cancer. Here we designed a series of PSMA-targeting inhibitors with distinct molecular structures, which were synthesized and characterized using both experimental and computational approaches. Microsecond molecular dynamics simulations revealed the structural and thermodynamic details of PSMA-inhibitor interactions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!