Alzheimer's disease (AD) is an irreversible neurodegenerative disorder that affects more than 44 million people worldwide. Despite the high disease burden, there is no effective treatment for people suffering from AD. Mesenchymal stem cells (MSCs) are multipotent stromal cells that have been widely studied due to their therapeutic potential. However, administration of cells has been found to have a multitude of limitations. Recently, extracellular vesicles (EVs) derived from MSCs have been studied as a therapeutic candidate, as they exhibit similar immunoprotective and immunomodulatory abilities as the host human MSCs. To test the potential therapeutic effects of MSC EVs, human bone-marrow derived MSCs were grown in three-dimensional (3D) cell culture, and small EVs were harvested using differential ultracentrifugation. These small EVs were given to non-transgenic (NT) or 5XFAD (5 familial Alzheimer's disease mutations) mice intranasally (IN) every 4 days for 4 months. The mice were then required to perform a variety of behavioral assays to measure changes in learning and memory. Afterwards, immunohistochemistry was performed on brain slices to measure amyloid beta (Aβ) and glial fibrillary acidic protein (GFAP) levels. The data revealed that 5XFAD mice that received hMSC-EV treatment behaved significantly better in cognitive tests than saline treated 5XFAD mice, with no significant change between EV-treated 5XFAD mice and NT mice. Additionally, we found lower Aβ plaque load in the hippocampus of the EV-treated mice. Finally, less colocalization between GFAP and Aβ plaques was found in the brain of EV-treated mice compared to saline. Taken together, these data suggest that IN administration of MSC-derived EVs can slow down AD pathogenesis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8344012 | PMC |
http://dx.doi.org/10.7150/thno.62069 | DOI Listing |
ACS Chem Neurosci
January 2025
Department of International Medical, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Lujiang Road 373, Hefei 230001, Anhui, China.
The dysregulation of T cell differentiation was associated with cognitive impairment. Recently, the peripheric β-secretase (BACE1) has been suggested as a regulator of T cell differentiation, which was increased in both cognitive impairment (CI) and type 2 diabetes mellitus (T2DM) in CI patients. However, the relationship between T cell dysfunction and CI remains unclear.
View Article and Find Full Text PDFMetab Brain Dis
January 2025
Department of Neurology, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA.
Neuroinflammation and mitochondrial dysfunction are early events in Alzheimer's disease (AD) and contribute to neurodegeneration and cognitive impairment. Evidence suggests that the inflammatory axis mediated by macrophage migration inhibitory factor (MIF) binding to its receptor, CD74, plays an important role in many central nervous system (CNS) disorders such as AD. Our group has developed DRhQ, a novel CD74 binding construct which competitively inhibits MIF binding, blocks macrophage activation and migration into the CNS, enhances anti-inflammatory microglia cell numbers and reduces pro-inflammatory gene expression.
View Article and Find Full Text PDFNat Aging
January 2025
Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Korea.
The abnormal deposition of amyloid β (Aβ), produced by proteolytic cleavage events of amyloid precursor protein involving the protease γ-secretase and subsequent polymerization into amyloid plaques, plays a key role in the neuropathology of Alzheimer's disease (AD). Here we show that ErbB3 binding protein 1 (EBP1)/proliferation-associated 2G4 (PA2G4) interacts with presenilin, a catalytic subunit of γ-secretase, inhibiting Aβ production. Mice lacking forebrain Ebp1/Pa2g4 recapitulate the representative phenotypes of late-onset sporadic AD, displaying an age-dependent increase in Aβ deposition, amyloid plaques and cognitive dysfunction.
View Article and Find Full Text PDFPhytomedicine
January 2025
Department of Psychiatry and Psychotherapy, University Medical Center Mainz, Johannes Gutenberg-University Mainz, Mainz, Germany; Research Center for Immunotherapy (FZI), University Medical Center at the Johannes Gutenberg University Mainz, Mainz, Germany. Electronic address:
Background: Ginkgo biloba leaf extract EGb 761® has shown clinical efficacy in patients with mild cognitive impairment and dementia. However, the pharmacological action of EGb 761® in Alzheimer's disease (AD) remains unclear and molecular mechanisms targeted in the brain are not completely understood.
Hypothesis/purpose: We aimed to investigate 1) the potential sex-dependent effects of oral administration of EGb 761® in 5xFAD mice, an AD mouse model, and 2) the underlying microglial subtype responsible for the observed anti-inflammatory effects in the brain.
Alzheimers Dement
January 2025
Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA.
Introduction: Plaques are a hallmark feature of Alzheimer's disease (AD). We found that the loss of mucosal-associated invariant T (MAIT) cells and their antigen-presenting molecule MR1 caused a delay in plaque pathology development in AD mouse models. However, it remains unknown how this axis is impacting dystrophic neurites.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!