A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Deep learning-enabled ultra-widefield retinal vessel segmentation with an automated quality-optimized angiographic phase selection tool. | LitMetric

Objectives: To demonstrate the feasibility of a deep learning-based vascular segmentation tool for UWFA and evaluate its ability to automatically identify quality-optimized phase-specific images.

Methods: Cumulative retinal vessel areas (RVA) were extracted from all available UWFA frames. Cubic splines were fitted for serial vascular assessment throughout the angiographic phases of eyes with diabetic retinopathy (DR), sickle cell retinopathy (SCR), or normal retinal vasculature. The image with maximum RVA was selected as the optimum early phase. A late phase frame was selected at a minimum of 4 min that most closely mirrored the RVA from the selected early image. Trained image analysts evaluated the selected pairs.

Results: A total of 13,980 UWFA sequences from 462 sessions were used to evaluate the performance and 1578 UWFA sequences from 66 sessions were used to create cubic splines. Maximum RVA was detected at a mean of 41 ± 15, 47 ± 27, 38 ± 8 s for DR, SCR, and normals respectively. In 85.2% of the sessions, appropriate images for both phases were successfully identified. The individual success rate was 90.7% for early and 94.6% for late frames.

Conclusions: Retinal vascular characteristics are highly phased and field-of-view sensitive. Vascular parameters extracted by deep learning algorithms can be used for quality assessment of angiographic images and quality optimized phase selection. Clinical applications of a deep learning-based vascular segmentation and phase selection system might significantly improve the speed, consistency, and objectivity of UWFA evaluation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9391395PMC
http://dx.doi.org/10.1038/s41433-021-01661-4DOI Listing

Publication Analysis

Top Keywords

phase selection
12
retinal vessel
8
deep learning-based
8
learning-based vascular
8
vascular segmentation
8
cubic splines
8
assessment angiographic
8
maximum rva
8
rva selected
8
uwfa sequences
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!