Introduction: A worldwide vaccination campaign is underway to bring an end to the SARS-CoV-2 pandemic; however, its success relies heavily on the actual willingness of individuals to get vaccinated. Social media platforms such as Twitter may prove to be a valuable source of information on the attitudes and sentiment towards SARS-CoV-2 vaccination that can be tracked almost instantaneously.
Materials And Methods: The Twitter academic Application Programming Interface was used to retrieve all English-language tweets mentioning AstraZeneca/Oxford, Pfizer/BioNTech and Moderna vaccines in 4 months from 1 December 2020 to 31 March 2021. Sentiment analysis was performed using the AFINN lexicon to calculate the daily average sentiment of tweets which was evaluated longitudinally and comparatively for each vaccine throughout the 4 months.
Results: A total of 701 891 tweets have been retrieved and included in the daily sentiment analysis. The sentiment regarding Pfizer and Moderna vaccines appeared positive and stable throughout the 4 months, with no significant differences in sentiment between the months. In contrast, the sentiment regarding the AstraZeneca/Oxford vaccine seems to be decreasing over time, with a significant decrease when comparing December with March (p<0.0000000001, mean difference=-0.746, 95% CI=-0.915 to -0.577).
Conclusion: Lexicon-based Twitter sentiment analysis is a valuable and easily implemented tool to track the sentiment regarding SARS-CoV-2 vaccines. It is worrisome that the sentiment regarding the AstraZeneca/Oxford vaccine appears to be turning negative over time, as this may boost hesitancy rates towards this specific SARS-CoV-2 vaccine.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1136/postgradmedj-2021-140685 | DOI Listing |
BMJ Open
January 2025
Deep Digital Phenotyping Research Unit, Department of Precision Health, Luxembourg Institute of Health, Strassen, Luxembourg
Objectives: Diabetes distress can negatively affect the well-being of individuals with type 1 diabetes (T1D). Voice-based (VB) technology can be used to develop inexpensive and ecological tools for managing diabetes distress. This study explored the competencies to engage with digital health services, needs and preferences of individuals with T1D or caring for a child with this condition regarding VB technology to inform the tailoring of a co-designed tool for supporting diabetes distress management.
View Article and Find Full Text PDFCan J Surg
January 2025
From the Faculty of Medicine, Université de Montréal, Montréal, Que. (Levett); the Department of Neurology and Neurosurgery, McGill University, Montréal, Que. (Elkaim); the Department of Orthopaedic Surgery, McGill University, Jewish General Hospital, Montréal, Que. (Zukor, Huk, Antoniou)
Background: Robotic technology has been used in total hip arthroplasty (THA) for several years. Despite the advances in this field, perspectives surrounding robotic THA are not fully understood. This study aimed to characterize the landscape of robotic THA on social media.
View Article and Find Full Text PDFJMIR Form Res
December 2024
School of Media and Journalism, Kent State University, Kent, OH, United States.
Background: The pervasiveness of drug culture has become evident in popular music and social media. Previous research has examined drug abuse content in both social media and popular music; however, to our knowledge, the intersection of drug abuse content in these 2 domains has not been explored. To address the ongoing drug epidemic, we analyzed drug-related content on Twitter (subsequently rebranded X), with a specific focus on lyrics.
View Article and Find Full Text PDFFuture clinical trials targeting Alzheimer's disease (AD) on new disease modifying drugs necessitate a paradigm shift towards early identification of individuals at risk. Emerging evidence indicates that subtle alterations in language and speech characteristics may manifest concurrently with the progression of neurodegenerative disorders like AD. These changes manifest as discernible variations, assessable through semantic nuances, word choices, sentiment, grammar usage (linguistic features), and phonetic/acoustic traits (paralinguistic features).
View Article and Find Full Text PDFReddit is a popular social media platform that is made up of subreddits, a kind of special interest page. One of these is DoctorsUK, which has over 45,000 members and claims to be a community for UK-based doctors. There is, however, no way of verifying who uses the page, as Reddit is essentially anonymous.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!