Building behavior does not drive rates of phenotypic evolution in spiders.

Proc Natl Acad Sci U S A

Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia.

Published: August 2021

Do animals set the course for the evolution of their lineage when manipulating their environment? This heavily disputed question is empirically unexplored but critical to interpret phenotypic diversity. Here, we tested whether the macroevolutionary rates of body morphology correlate with the use of built artifacts in a megadiverse clade comprising builders and nonbuilders-spiders. By separating the inferred building-dependent rates from background effects, we found that variation in the evolution of morphology is poorly explained by artifact use. Thus natural selection acting directly on body morphology rather than indirectly via construction behavior is the dominant driver of phenotypic diversity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8379907PMC
http://dx.doi.org/10.1073/pnas.2102693118DOI Listing

Publication Analysis

Top Keywords

phenotypic diversity
8
body morphology
8
building behavior
4
behavior drive
4
drive rates
4
rates phenotypic
4
phenotypic evolution
4
evolution spiders
4
spiders animals
4
animals set
4

Similar Publications

Identifying Symptoms of Delirium from Clinical Narratives Using Natural Language Processing.

Proc (IEEE Int Conf Healthc Inform)

June 2024

Department of Health Outcomes and Biomedical Informatics, University of Florida, Gainesville, FL, USA.

Delirium is an acute decline or fluctuation in attention, awareness, or other cognitive function that can lead to serious adverse outcomes. Despite the severe outcomes, delirium is frequently unrecognized and uncoded in patients' electronic health records (EHRs) due to its transient and diverse nature. Natural language processing (NLP), a key technology that extracts medical concepts from clinical narratives, has shown great potential in studies of delirium outcomes and symptoms.

View Article and Find Full Text PDF

Revised taxonomic classification of the genomes, providing new insights into the genus .

Front Microbiol

December 2024

National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.

Background: strains are important opportunistic pathogens with great potential applications in industry and agriculture. Their significant genetic and phenotypic diversity has led to several changes in their taxonomic localization and was prone to inaccurate species classification based on traditional identification methods.

Methods: All 2,615 genomes of the genus were obtained from the NCBI genome database.

View Article and Find Full Text PDF

Phosphoribosylaminoimidazole carboxylase (PAICS) deficiency, caused by biallelic variants in PAICS gene, is an inborn error of de novo purine synthesis. Only two patients from a consanguineous family have been reported, with multiple congenital malformations, resulting in early neonatal death. Molecular analysis identified a homozygous p.

View Article and Find Full Text PDF

A novel transcription factor OsMYB73 affects grain size and chalkiness by regulating endosperm storage substances' accumulation-mediated auxin biosynthesis signalling pathway in rice.

Plant Biotechnol J

December 2024

State Key Laboratory of Rice Biology (State Key Laboratory of Rice Biology and Breeding), China-IRRI Joint Research Center on Rice Quality and Nutrition, Key Laboratory of Rice Biology and Genetics Breeding of Ministry of Agriculture, China National Center for Rice Improvement, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China.

Enhanced grain yield and quality traits are everlasting breeding goals. It is therefore of great significance to uncover more genetic resources associated with these two important agronomic traits. Plant MYB family transcription factors play important regulatory roles in diverse biological processes.

View Article and Find Full Text PDF

Background: Parkinson's disease (PD) and multiple system atrophy (MSA) are classified as α-synucleinopathies and are primarily differentiated by their clinical phenotypes. Delineating these diseases based on their specific α-synuclein (α-Syn) proteoform pathologies is crucial for accurate antemortem biomarker diagnosis. Newly identified α-Syn pathologies in PD raise questions about whether MSA exhibits a similar diversity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!