Detoxification of aflatoxin B in broiler chickens by a triple-action feed additive.

Food Addit Contam Part A Chem Anal Control Expo Risk Assess

Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China.

Published: September 2021

The aim of this study was to evaluate the detoxification of aflatoxin B (AFB) and in broiler chickens using a triple-action compound mycotoxin detoxifier (CMD). Response surface methodology (RSM) was used to evaluate AFB1 detoxification in artificial gastrointestinal fluid (AGIF) . The AFB-degradation rate was 41.5% ( < .05) when using a compound probiotic (CP) in which the visible counts of and were 1.0 × 10, 1.0 × 10, 1.0 × 10 and 1.0 × 10 CFU/mL, respectively. When CP was combined with 0.1% AFB-degrading enzyme to give CPADE, the AFB-degradation rate was increased to 55.28% ( < .05). The AFB-removal rate was further increased to above 90% when CPADE was combined with 0.03% montmorillonite to make CMD. , a total of 150 one-day-old Ross broilers were allotted to 3 groups, 5 replications for each group, 10 broilers in each replication. Group A: basal diet, Group B: basal diet with 40 μg/kg AFB, Group C: basal diet with 40 μg/kg AFB plus CMD. The feeding experiment period was 21 d. The results showed that broiler growth was increased, and AFB residues in serum, excreta and liver were decreased by CMD addition in broiler diet ( < .05). In conclusion, CMD was able to remove AFB efficiently and to increase broiler production performance and reduce AFB residues in the chickens.

Download full-text PDF

Source
http://dx.doi.org/10.1080/19440049.2021.1957159DOI Listing

Publication Analysis

Top Keywords

detoxification aflatoxin
8
broiler chickens
8
chickens triple-action
8
aflatoxin broiler
4
triple-action feed
4
feed additive
4
additive aim
4
aim study
4
study evaluate
4
evaluate detoxification
4

Similar Publications

Aflatoxin B1 (AFB1) has been reported to synergize with hepatitis B virus (HBV) to induce development of hepatocellular carcinoma (HCC). Precise daily exposure to AFB1 and its contribution to liver injury have not been quantified and have even been disregarded due to lack of convenient detection, and the strong species specificity of HBV infection has restricted research on their synergistic harm. Hence, our objective was to investigate the molecular mechanisms by which AFB1 exacerbates HBV-related injury.

View Article and Find Full Text PDF

Expression and purification of Mycobacterium tuberculosis F-dependent glucose-6-phosphate dehydrogenase enzyme using Escherichia coli.

Protein Expr Purif

January 2025

Manchester Institute of Biotechnology, Department of Chemistry, University of Manchester, 131 Princess St, Manchester, M1 7DN, United Kingdom. Electronic address:

Since their discovery in Mycobacterium tuberculosis (Mtb), F-dependent enzymes have been identified as both important drug targets and potential industrial biocatalysts, including for bioremediation of otherwise recalcitrant substrates. Mtb-FGD1, utilizes glucose 6-phosphate (G6P) as an electron donor for the reduction of F. Current expression systems for Mtb-FGD1 use Mycobacterium smegmatis as host, because of the tendency for it to form inclusion bodies in E.

View Article and Find Full Text PDF

The Detoxification Effects of Melatonin on Aflatoxin-Caused Toxic Effects and Underlying Molecular Mechanisms.

Antioxidants (Basel)

December 2024

National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.

Aflatoxins (AFTs) are a form of mycotoxins mainly produced by and , which are common contaminants in various agricultural sources such as feed, milk, food, and grain crops. Aflatoxin B1 (AFB1) is the most toxic one among all AFTs. AFB1 undergoes bioactivation into AFB1-8,9-epoxide, then leads to diverse harmful effects such as neurotoxicity, carcinogenicity, hepatotoxicity, reproductive toxicity, nephrotoxicity, and immunotoxicity, with specific molecular mechanisms varying in different pathologies.

View Article and Find Full Text PDF

Efficient Expression and Activity Optimization of Manganese Peroxidase for the Simultaneous Degradation of Aflatoxins AFB, AFB, AFG, and AFG.

J Agric Food Chem

January 2025

School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China.

Aflatoxins (AFs), notorious mycotoxins that pose significant risks to human and animal health, make biodegradation extremely crucial as they offer a promising approach to managing and reducing their harmful impacts. In this study, we identified a manganese peroxidase from (Mnp) through protein similarity analysis, which has the capability to degrade four AFs (AFB, AFB, AFG, and AFG) simultaneously. The gene encoding this enzyme was subject to codon optimization, followed by cold shock induction expression using the pColdII vector, leading to the soluble expression of manganese peroxidase (Mnp) in .

View Article and Find Full Text PDF

The contamination of food and animal feeds with mycotoxions, particularly aflatoxin B1 (AFB1), poses significant risks to human health and causes economic losses. This study investigated bacteria from various fermented milk products to assess their ability to detoxify AFB1. A variety of household fermented kefir milk, kefir-like beverages, and kefir grains were collected from rural areas and subjected to microbiological analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!