Currently there is no FDA-licensed vaccine or therapeutic against Sudan ebolavirus (SUDV) infections. The largest ever reported 2014-2016 West Africa outbreak, as well as the 2021 outbreak in the Democratic Republic of Congo, highlight the critical need for countermeasures against filovirus infections. A well-characterized small animal model that is susceptible to wild-type filoviruses would greatly add to the screening of antivirals and vaccines. Here, we infected signal transducer and activator of transcription-1 knock out (STAT-1 KO) mice with five different wildtype filoviruses to determine susceptibility. SUDV and Marburg virus (MARV) were the most virulent, and caused 100% or 80% lethality, respectively. Zaire ebolavirus (EBOV), Bundibugyo ebolavirus (BDBV), and Taï Forest ebolavirus (TAFV) caused 40%, 20%, and no mortality, respectively. Further characterization of SUDV in STAT-1 KO mice demonstrated lethality down to 3.1 × 10 pfu. Viral genomic material was detectable in serum as early as 1 to 2 days post-challenge. The onset of viremia was closely followed by significant changes in total white blood cells and proportion of neutrophils and lymphocytes, as well as by an influx of neutrophils in the liver and spleen. Concomitant significant fluctuations in blood glucose, albumin, globulin, and alanine aminotransferase were also noted, altogether consistent with other models of filovirus infection. Finally, favipiravir treatment fully protected STAT-1 KO mice from lethal SUDV challenge, suggesting that this may be an appropriate small animal model to screen anti-SUDV countermeasures.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8310124PMC
http://dx.doi.org/10.3390/v13071388DOI Listing

Publication Analysis

Top Keywords

stat-1 mice
12
small animal
8
animal model
8
sudv
5
stat-1
4
stat-1 knockout
4
mice
4
knockout mice
4
mice model
4
model wild-type
4

Similar Publications

DOC2b enrichment mitigates proinflammatory cytokine-induced CXCL10 expression by attenuating IKKβ and STAT-1 signaling in human islets.

Metabolism

January 2025

Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA, USA. Electronic address:

Introduction: Type 1 diabetic human islet β-cells are deficient in double C 2 like domain beta (DOC2b) protein. Further, DOC2b protects against cytokine-induced pancreatic islet β-cell stress and apoptosis. However, the mechanisms underpinning the protective effects of DOC2b remain unknown.

View Article and Find Full Text PDF

Introduction: Type 1 diabetic human islet β-cells are deficient in double C 2 like domain beta (DOC2b) protein. Further, DOC2b protects against cytokine-induced pancreatic islet β-cell stress and apoptosis. However, the mechanisms underpinning the protective effects of DOC2b remain unknown.

View Article and Find Full Text PDF

Systemic administration of Janus kinase (JAK) inhibitors is effective in treating chronic graft-versus-host disease (cGVHD) but is associated with side effects. Topical drug administration effectively minimizes side effects. We aimed to investigate potential trends of the efficacy of topical delgocitinib administration in a mouse model.

View Article and Find Full Text PDF

This study aimed to investigate whether activation of PPARγ regulates M1/M2 macrophage polarization to attenuate dextran sulfate sodium salt (DSS)-induced inflammatory bowel disease (IBD) via the STAT-1/STAT-6 pathway in vivo and in vitro. We first examined the effect of PPARγ on macrophage polarization in LPS/IFN-γ-treated M1 RAW264.7 cells and IL-4/IL-13-treated M2 RAW264.

View Article and Find Full Text PDF

Macrophages possess M1/M2 polarization, which perform an essential role in immunology and inflammation studies. However, few studies have investigated the specific molecules involved in the polarization process beyond its induction and characterization. Here, we determined that the molecule S1PR1 regulates M1 polarization in macrophages and that the surface marker CD83 is involved in this process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!