Infection by RNA viruses causes extensive cellular reorganization, including hijacking of membranes to create membranous structures termed replication organelles, which support viral RNA synthesis and virion assembly. In this study, we show that infection with coxsackievirus B3 entails a profound impairment of the protein homeostasis at virus-utilized membranes, reflected by an accumulation of ubiquitinylated proteins, including K48-linked polyubiquitin conjugates, known to direct proteins to proteasomal degradation. The enrichment of membrane-bound ubiquitin conjugates is attributed to the presence of the non-structural viral proteins 2B and 3A, which are known to perturb membrane integrity and can cause an extensive rearrangement of cellular membranes. The locally increased abundance of ubiquitinylated proteins occurs without an increase of oxidatively damaged proteins. During the exponential phase of replication, the oxidative damage of membrane proteins is even diminished, an effect we attribute to the recruitment of glutathione, which is known to be required for the formation of infectious virus particles. Furthermore, we show that the proteasome contributes to the processing of viral precursor proteins. Taken together, we demonstrate how an infection with coxsackievirus B3 affects the cellular protein and redox homeostasis locally at the site of viral replication and virus assembly.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8310229PMC
http://dx.doi.org/10.3390/v13071360DOI Listing

Publication Analysis

Top Keywords

viral replication
8
infection coxsackievirus
8
ubiquitinylated proteins
8
proteins
7
viral
5
coxsackievirus exploits
4
exploits ubiquitin-proteasome
4
ubiquitin-proteasome system
4
system facilitate
4
facilitate viral
4

Similar Publications

Herpesviruses rely on host RNA polymerae II (RNA Pol II) for their mRNA transcription, yet the mechanisms of which has been poorly defined, while certain herpesviruses can enhance viral gene transcription by altering the RNA Pol II location, modulating its phosphorylation, or directly interacting with RNA Pol II. However, the influence of herpesviruses on RNA Pol II transcription extends beyond these direct effects. Here, we present a novel mechanism by which the host cell cycle regulates viral gene transcription via RNA Pol II during infection by Anatid Herpesvirus 1 (AnHV-1), an avian alpha-herpesvirus.

View Article and Find Full Text PDF

A single-cell atlas of the Culex tarsalis midgut during West Nile virus infection.

PLoS Pathog

January 2025

Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA.

The mosquito midgut functions as a key interface between pathogen and vector. However, studies of midgut physiology and virus infection dynamics are scarce, and in Culex tarsalis-an extremely efficient vector of West Nile virus (WNV)-nonexistent. We performed single-cell RNA sequencing on Cx.

View Article and Find Full Text PDF

Lenacapavir (LEN) is a highly potent, long-acting antiretroviral medication for treating people infected with muti-drug-resistant HIV-1 phenotypes. The inhibitor targets multifaceted functions of the viral capsid protein (CA) during HIV-1 replication. Previous studies have mainly focused on elucidating LEN's mode of action during viral ingress.

View Article and Find Full Text PDF

The Japanese encephalitis virus NS1' protein facilitates virus infection in mosquitoes.

PLoS Negl Trop Dis

January 2025

Research Center for Swine Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.

Background: The Japanese encephalitis virus (JEV), a mosquito-borne flavivirus, is known for its capacity to cause severe neurological disease in Asia. Neurotropic flaviviruses within the Japanese encephalitis (JE) serogroup possess the distinctive feature of expressing a unique nonstructural protein, NS1'. The NS1' protein consists of the full NS1 protein with an additional 52 amino acid extension at the C-terminus and has been demonstrated to exhibit virulence in mammalian hosts upon infection.

View Article and Find Full Text PDF

Upon infection, human papillomavirus (HPV) manipulates host cell gene expression to create an environment that is supportive of a productive and persistent infection. The virus-induced changes to the host cell's transcriptome are thought to contribute to carcinogenesis. Here, we show by RNA-sequencing that oncogenic HPV18 episome replication in primary human foreskin keratinocytes (HFKs) drives host transcriptional changes that are consistent between multiple HFK donors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!