To treat the stochastic wind nature, it is required to attain all available power from the wind energy conversion system (WECS). Therefore, several maximum power point tracking (MPPT) techniques are utilized. Among them, hill-climbing search (HCS) techniques are widely implemented owing to their various features. Regarding current HCS techniques, the rotor speed is mainly perturbed using predefined constants or objective functions, which makes the selection of step sizes a multifaceted task. These limitations are directly reflected in the overall dynamic WECS performance such as tracking speed, power fluctuations, and system efficiency. To deal with the challenges of the existing HCS techniques, this paper proposes a new adaptive HCS (AD-HCS) technique with self-adjustable step size using model reference adaptive control (MRAC) based on the PID controller. Firstly, the mechanical power fluctuations are detected, then the MRAC continuously optimizes the PID gains so as to generate an appropriate dynamic step size until harvesting the maximum power point (MPP) under the optimal tracking conditions. Looking specifically at the simulation results, the proposed AD-HCS technique exhibits low oscillations around the MPP and a small settling time. Moreover, WECS efficiency is increased by 5% and 2% compared to the conventional and recent HCS techniques, respectively. Finally, the studied system is confirmed over a 1.5 MW, gird-tied, double-fed induction generator (DFIG) WECS using MATLAB/Simulink.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8348028PMC
http://dx.doi.org/10.3390/s21155187DOI Listing

Publication Analysis

Top Keywords

hcs techniques
16
adaptive hcs
8
model reference
8
reference adaptive
8
adaptive control
8
maximum power
8
power point
8
power fluctuations
8
ad-hcs technique
8
step size
8

Similar Publications

Optimizing Care for Primary Glomerulonephritis: The Role of Thyroid Evaluation.

Endocr Metab Immune Disord Drug Targets

January 2025

Department of Endocrinology, Metabolism, and Diabetes, Istanbul University-Cerrahpasa, Istanbul, Turkey.

Background: The coexistence of primary glomerulonephritis and autoimmune thyroid disease has not been investigated.

Objective: This study aimed to assess thyroid morphology using sonography, determine the prevalence of autoimmune thyroid disorders, and evaluate thyroid function status in patients diagnosed with primary glomerulonephritis.

Materials And Methods: This single-center cross-sectional and observational study included 58 consecutive patients with primary glomerulonephritis and 58 healthy controls (HC).

View Article and Find Full Text PDF

Background: Functional near-infrared spectroscopy (fNIRS) is being increasingly utilized to visualize the brain areas involved in cognitive activity to understand the human brain better. Its portability and easy setup give it an advantage over other functional brain imaging tools. The current study utilizes fNIRS while performing a Stroop test, which is commonly used to assess the impairment of information selection in depression.

View Article and Find Full Text PDF

Background: Hyperreflective retinal foci (HRF) visualized by optical coherence tomography (OCT) potentially represent clusters of microglia. We compared HRF frequencies and their association with retinal neurodegeneration between people with clinically isolated syndrome (pwCIS), multiple sclerosis (pwMS), aquaporin 4-IgG positive neuromyelitis optica spectrum disorder (pwNMOSD), and healthy controls (HC)-as well as between eyes with (ONeyes) and without a history of optic neuritis (ONeyes).

Methods: Cross-sectional data of pwCIS, pwMS, and pwNMOSD with previous ON and HC were acquired at Charité-Universitätsmedizin Berlin.

View Article and Find Full Text PDF

Brain iron deposition and cognitive decline in patients with cerebral small vessel disease : a quantitative susceptibility mapping study.

Alzheimers Res Ther

January 2025

Department of Radiology, Weill Medical College of Cornell University, New York, NY, USA, Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA.

Background: Quantitative susceptibility mapping (QSM) can study the susceptibility values of brain tissue which allows for noninvasive examination of local brain iron levels in both normal and pathological conditions.

Purpose: Our study compares brain iron deposition in gray matter (GM) nuclei between cerebral small vessel disease (CSVD) patients and healthy controls (HCs), exploring factors that affect iron deposition and cognitive function.

Materials And Methods: A total of 321 subjects were enrolled in this study.

View Article and Find Full Text PDF

Altered Static and Dynamic Functional Network Connectivity and Combined Machine Learning in Stroke.

Brain Topogr

January 2025

Department of Radiology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, No 152, Ai Guo Road, Dong Hu District, Nanchang, Jiangxi, 330006, China.

Stroke is a condition characterized by damage to the cerebral vasculature from various causes, resulting in focal or widespread brain tissue damage. Prior neuroimaging research has demonstrated that individuals with stroke present structural and functional brain abnormalities, evident through disruptions in motor, cognitive, and other vital functions. Nevertheless, there is a lack of studies on alterations in static and dynamic functional network connectivity in the brains of stroke patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!