The Short Physical Performance Battery (SPPB) is a widely accepted test for measuring lower extremity function in older adults. However, there are concerns regarding the examination time required to conduct a complete SPPB consisting of three components (walking speed, chair rise, and standing balance tests) in clinical settings. We aimed to assess specific examination times for each component of the electronic Short Physical Performance Battery (eSPPB) and compare the ability of the original three-component examinations (eSPPB) and a faster, two-component examination without a balance test (electronic Quick Physical Performance Battery, eQPPB) to classify sarcopenia. The study was a retrospective, cross-sectional study which included 124 ambulatory outpatients who underwent physical performance examination at a geriatric clinic of a tertiary, academic hospital in Seoul, Korea, between December 2020 and March 2021. For eSPPB, we used a toolkit containing sensors and software (Dyphi, Daejeon, Korea) developed to measure standing balance, walking speed, and chair rise test results. Component-specific time stamps were used to log the raw data. Duration of balance examination, 5 times sit-to-stand test (5XSST), and walking speed examination were calculated. Sarcopenia was determined using the 2019 Asian Working Group for Sarcopenia (AWGS) guideline. The median age was 78 years (interquartile range, IQR: 73,82) and 77 subjects (62.1%) were female. The total mean eSPPB test time was 124.8 ± 29.0 s (balance test time 61.8 ± 12.3 s, 49.5%; gait speed test time 34.3 ± 11.9 s, 27.5%; and 5XSST time 28.7 ± 19.1 s, 23.0%). The total mean eQPPB test time was 63.0 ± 25.4 s. Based on the AWGS criteria, 34 (27.4%) patient's results were consistent with sarcopenia. C-statistics for classifying sarcopenia were 0.83 for eSPPB and 0.85 for eQPPB ( = 0.264), while eQPPB took 49.5% less measurement time compared with eSPPB. Breakdowns of eSPPB test times were identified. Omitting balance tests may reduce test time without significantly affecting the classifying ability of eSPPB for sarcopenia.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8347973PMC
http://dx.doi.org/10.3390/s21155147DOI Listing

Publication Analysis

Top Keywords

physical performance
20
test time
20
performance battery
12
walking speed
12
time
10
test
10
measurement time
8
short physical
8
speed chair
8
chair rise
8

Similar Publications

Racil, G, Padulo, J, Trabelsi, Y, Frizziero, A, Russo, L, and Migliaccio, GM. Rhythmic exercises before basketball training: A study on motor skills, static balance, and reaction speed in school-aged children. J Strength Cond Res 38(12): e761-e768, 2024-The aim of this study was to investigate the effects of combining rhythmic exercises with basketball training on the improvement of basic motor and physical skills in children.

View Article and Find Full Text PDF

Edwards, AM, Coleman, D, Fuller, J, Kesisoglou, A, and Menting, SGP. Time perception and enjoyment of professional soccer players in different training sessions: Implications for assessment of session-RPE and training load. J Strength Cond Res 38(12): e754-e760, 2024-The purpose of this study was to investigate whether the perception of time and enjoyment levels among professional soccer players varied according to the type of training undertaken and whether this influenced the training load (TL) assessment method of session-rating of perceived exertion (sRPE).

View Article and Find Full Text PDF

Philipp, NM, Blackburn, SD, Cabarkapa, D, and Fry, AC. The effects of a low-volume, high-intensity pre-season micro-cycle on neuromuscular performance in collegiate female basketball players. J Strength Cond Res 38(12): 2136-2146, 2024-The use of stretch-shortening cycle (SSC)-based measures of vertical jump performance to monitor responses to training exposures is common practice in sport science.

View Article and Find Full Text PDF

Kember, LS, Riehm, CD, Schille, A, Slaton, JA, Myer, GD, and Lloyd, RS. Residual biomechanical deficits identified with the tuck jump assessment in female athletes 9 months after ACLR surgery. J Strength Cond Res 38(12): 2065-2073, 2024-Addressing biomechanical deficits in female athletes after anterior cruciate ligament reconstruction (ACLR) is crucial for safe return-to-play.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!