This paper proposes a method to embed and extract a watermark on a digital hologram using a deep neural network. The entire algorithm for watermarking digital holograms consists of three sub-networks. For the robustness of watermarking, an attack simulation is inserted inside the deep neural network. By including attack simulation and holographic reconstruction in the network, the deep neural network for watermarking can simultaneously train invisibility and robustness. We propose a network training method using hologram and reconstruction. After training the proposed network, we analyze the robustness of each attack and perform re-training according to this result to propose a method to improve the robustness. We quantitatively evaluate the results of robustness against various attacks and show the reliability of the proposed technique.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8347406 | PMC |
http://dx.doi.org/10.3390/s21154977 | DOI Listing |
Comput Biol Med
January 2025
Emerging Technologies Research Lab (ETRL), College of Computer Science and Information Systems, Najran University, Najran, 61441, Saudi Arabia; Department of Computer Science, College of Computer Science and Information Systems, Najran University, Najran, 61441, Saudi Arabia. Electronic address:
- Brain tumors (BT), both benign and malignant, pose a substantial impact on human health and need precise and early detection for successful treatment. Analysing magnetic resonance imaging (MRI) image is a common method for BT diagnosis and segmentation, yet misdiagnoses yield effective medical responses, impacting patient survival rates. Recent technological advancements have popularized deep learning-based medical image analysis, leveraging transfer learning to reuse pre-trained models for various applications.
View Article and Find Full Text PDFComput Biol Med
January 2025
School of Computer Science, Chungbuk National University, Cheongju 28644, Republic of Korea. Electronic address:
The fusion index is a critical metric for quantitatively assessing the transformation of in vitro muscle cells into myotubes in the biological and medical fields. Traditional methods for calculating this index manually involve the labor-intensive counting of numerous muscle cell nuclei in images, which necessitates determining whether each nucleus is located inside or outside the myotubes, leading to significant inter-observer variation. To address these challenges, this study proposes a three-stage process that integrates the strengths of pattern recognition and deep-learning to automatically calculate the fusion index.
View Article and Find Full Text PDFClin Oral Investig
January 2025
State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China.
Objectives: To develop a platform including a deep convolutional neural network (DCNN) for automatic segmentation of the maxillary sinus (MS) and adjacent structures, and automatic algorithms for measuring 3-dimensional (3D) clinical parameters.
Materials And Methods: 175 CBCTs containing 242 MS were used as the training, validating and testing datasets at the ratio of 7:1:2. The datasets contained healthy MS and MS with mild (2-4 mm), moderate (4-10 mm) and severe (10- mm) mucosal thickening.
J Med Syst
January 2025
Unitat de Suport a la Recerca Metropolitana Nord, Institut Universitari d'Investigació en Atenció Primària Jordi Gol (IDIAP Jordi Gol), C/ Mare de Déu de Guadalupe, 2, Mataró, 08303, Barcelona, Spain.
Predicting health-related outcomes can help with proactive healthcare planning and resource management. This is especially important on the older population, an age group growing in the coming decades. Considering longitudinal rather than cross-sectional information from primary care electronic health records (EHRs) can contribute to more informed predictions.
View Article and Find Full Text PDFEur Radiol
January 2025
Department of Radiology, Jena University Hospital-Friedrich Schiller University, Am Klinikum 1, 07747, Jena, Germany.
Objectives: Forensic age estimation from orthopantomograms (OPGs) can be performed more quickly and accurately using convolutional neural networks (CNNs), making them an ideal extension to standard forensic age estimation methods. This study evaluates improvements in forensic age prediction for children, adolescents, and young adults by training a custom CNN from a previous study, using a larger, diverse dataset with a focus on dental growth features.
Methods: 21,814 OPGs from 13,766 individuals aged 1 to under 25 years were utilized.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!