Influence of Graphene Nanoplatelet Lateral Size on the Electrical Conductivity and Electromagnetic Interference Shielding Performance of Polyester Nanocomposites.

Polymers (Basel)

Mechanical Engineering Department, École de Technologie Supérieure, 1100 Notre-Dame St W, Montréal, QC H3C 1K3, Canada.

Published: July 2021

Polyester nanocomposites reinforced with graphene nanoplatelets (GnPs) with two different lateral sizes are prepared by high shear mixing, followed by compression molding. The effects of the size and concentration of GnP, as well as of the processing method, on the electrical conductivity and electromagnetic interference (EMI) shielding behavior of these nanocomposites are experimentally investigated. The in-plane electrical conductivity of the nanocomposites with larger-size GnPs is approximately one order of magnitude higher than the cross-plane volume conductivity. According to the SEM images, the compression-induced alignments of GnPs is found to be responsible for this anisotropic behavior. The orientation of the small size GnPs in the composite is not influenced by the compression process as strongly, and consequently, the electrical conductivity of these nanocomposites exhibits only a slight anisotropy. The maximum EMI shielding effectiveness (SE) of 27 dB (reduction of 99.8% of the incident radiation) is achieved at 25 wt.% of the smaller-size GnP loading. Experimental results show that the EMI shielding mechanism of these composites has a strong dependency on the lateral dimension of GnPs. The non-aligned smaller-size GnPs are leveraged to obtain a relatively high absorption coefficient (≈40%). This absorption coefficient is superior to the existing single-filler bulk polymer composite with a similar thickness.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8347779PMC
http://dx.doi.org/10.3390/polym13152567DOI Listing

Publication Analysis

Top Keywords

electrical conductivity
16
emi shielding
12
conductivity electromagnetic
8
electromagnetic interference
8
polyester nanocomposites
8
conductivity nanocomposites
8
absorption coefficient
8
gnps
6
conductivity
5
nanocomposites
5

Similar Publications

Due to its "ferroionic" nature, CuInPS combines switchable ferroelectric polarization with highly mobile Cu ions, allowing for multiple resistance states. Its conductive mechanism involves ferroelectric switching, ion migration, and corresponding intercoupling, which are highly sensitive to external electric field. Distinguishing the dominant contribution of either ferroelectric switching or ion migration to dynamic conductivity remains a challenge and the conductive mechanism is not clear yet.

View Article and Find Full Text PDF

Introduction: Accurate and consistent data play a critical role in enabling health officials to make informed decisions regarding emerging trends in SARS-CoV-2 infections. Alongside traditional indicators such as the 7-day-incidence rate, wastewater-based epidemiology can provide valuable insights into SARS-CoV-2 concentration changes. However, the wastewater compositions and wastewater systems are rather complex.

View Article and Find Full Text PDF

Phase change materials (PCMs) have been widely recognized as a highly efficient medium for thermal energy storage. Many studies have identified the low thermal conductivity of PCMs. In the current investigation, the researchers have blended PCM with nanoparticles to enhance its thermal conductivity and electrical efficiency.

View Article and Find Full Text PDF

Bioprinting has emerged as a powerful manufacturing platform for tissue engineering, enabling the fabrication of 3D living structures by assembling living cells, biological molecules, and biomaterials into these structures. Among various biomaterials, hydrogels have been increasingly used in developing bioinks suitable for 3D bioprinting for diverse human body tissues and organs. In particular, hydrogel blends combining gelatin and gelatin methacryloyl (GelMA; "GG hydrogels") receive significant attention for 3D bioprinting owing to their many advantages, such as excellent biocompatibility, biodegradability, intrinsic bioactive groups, and polymer networks that combine the thermoresponsive gelation feature of gelatin and chemically crosslinkable attribute of GelMA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!