Nanomaterial-Based Dual-Emission Ratiometric Fluorescent Sensors for Biosensing and Cell Imaging.

Polymers (Basel)

Hubei Key Laboratory for Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang 438000, China.

Published: July 2021

Owing to the unique optophysical properties of nanomaterials and their self-calibration characteristics, nanomaterial-based (e.g., polymer dots (Pdots) quantum dots (QDs), silicon nanorods (SiNRs), and gold nanoparticle (AuNPs), etc.) ratiometric fluorescent sensors play an essential role in numerous biosensing and cell imaging applications. The dual-emission ratiometric fluorescence technique has the function of effective internal referencing, thereby avoiding the influence of various analyte-independent confounding factors. The sensitivity and precision of the detection can therefore be greatly improved. In this review, the recent progress in nanomaterial-based dual-emission ratiometric fluorescent biosensors is systematically summarized. First, we introduce two general design approaches for dual-emission ratiometric fluorescent sensors, involving ratiometric fluorescence with changes of one response signal and two reversible signals. Then, some recent typical examples of nanomaterial-based dual-emission ratiometric fluorescent biosensors are illustrated in detail. Finally, probable challenges and future outlooks for dual-emission ratiometric fluorescent nanosensors for biosensing and cell imaging are rationally discussed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8348892PMC
http://dx.doi.org/10.3390/polym13152540DOI Listing

Publication Analysis

Top Keywords

dual-emission ratiometric
24
ratiometric fluorescent
24
nanomaterial-based dual-emission
12
fluorescent sensors
12
biosensing cell
12
cell imaging
12
ratiometric
8
ratiometric fluorescence
8
fluorescent biosensors
8
fluorescent
6

Similar Publications

This study reports a novel ratiometric fluorescence sensor based on a tetraphenylethylene-bipyridine covalent organic framework (TPE-Bpy-COF) for the sensitive detection of Cu, leveraging the unique coordination properties of the bipyridine moieties. The interaction between Cu and the nitrogen atoms in the bipyridine units induces fluorescence quenching at 500 nm through an efficient host-guest electron transfer mechanism, where excited-state electrons from the COF framework are transferred to the vacant orbitals of Cu. Upon excitation at 410 nm, the sensor exhibits a primary emission peak at 500 nm, which is quenched in the presence of Cu, while an overtone peak at 820 nm remains stable, serving as an internal reference for ratiometric measurements and significantly enhancing the accuracy and reliability of the sensor.

View Article and Find Full Text PDF

Intrinsic dual-emitting Si dots for high-precision and broad-range pH detection.

Anal Chim Acta

February 2025

Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China. Electronic address:

Background: High-precision and broad-range pH detection is critical for health status assessment, such as signal transduction, enzyme activity, endocytosis, and cell proliferation and apoptosis. Although pH-responsive ratiometric fluorescent probes offer an effective pH monitoring strategy, their preparation often requires multi-step modification and decreases fluorescence efficiency and stability. Herein, we developed a simple method to prepare fluorescent Si dots with dual emission centers for high-precision and broad-range pH monitoring, and the detection of urease based on pH-responsive Si dots and pH monitoring in living cell was further explored.

View Article and Find Full Text PDF

Rapid, sensitive, and accurate detection of heavy metal ions is significant for human health and ecological security. Herein, a novel single-stranded DNA with poly(thymidine) tail is tactfully designed as template to synthesize dual-emission silver nanoclusters (ssDNA-AgNCs). The obtained AgNCs simultaneously emit red and green fluorescence, and the red emission can be selectively quenched by Hg, meanwhile the green emission of AgNCs increases synchronously.

View Article and Find Full Text PDF

Dual Ratiometric Fluorescence Sensors Based on Chiral Carbon Dots for the Sensitive and Specific Detection of Arginine.

Anal Chem

January 2025

State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China.

Arginine (Arg) is involved in tissue metabolism and regulates the immune function; thereby, achieving the detection of Arg is crucial for early diagnosis and treatment of diseases. Herein, dual ratiometric fluorescence sensors were prepared with the blue emission of levorotatory/dextrorotatory carbon dots (CDs) and the red emission of porphyrin (L/D-CDs-PP) for the sensitive and portable detection of Arg. Interestingly, L-CDs-PP and D-CDs-PP displayed not only the dual emission peaks at 493 and 650 nm but also different response modes to Arg; thus, they could serve as dual ratiometric fluorescence sensors to achieve the accurate and reliable detection of Arg, with the detection limit of 23.

View Article and Find Full Text PDF

Engineering Acid-Promoted Two-Photon Ratiometric Nanoprobes for Evaluating HClO in Lysosomes and Inflammatory Bowel Disease.

ACS Appl Mater Interfaces

January 2025

Anhui Provincial Key Laboratory of Biomedical Materials and Chemical Measurement, Laboratory of Functionalized Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China.

HClO is considered a potential contributing factor and biomarker of inflammatory bowel disease (IBD). Accurate monitoring of lysosomal HClO is important for further developing specific diagnostic and therapeutic schedules for IBD. However, only rare types of fluorescent probes have been reported for detecting HClO in IBD so far.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!