The biggest challenge in the present-day healthcare scenario is the rapid emergence and spread of antimicrobial resistance due to the rampant use of antibiotics in daily therapeutics. Such drug resistance is associated with the enhancement of microbial virulence and the acquisition of the ability to evade the host's immune response under the shelter of a biofilm. Quorum sensing (QS) is the mechanism by which the microbial colonies in a biofilm modulate and intercept communication without direct interaction. Hence, the eradication of biofilms through hindering this communication will lead to the successful management of drug resistance and may be a novel target for antimicrobial chemotherapy. Chitosan shows microbicidal activities by acting electrostatically with its positively charged amino groups, which interact with anionic moieties on microbial species, causing enhanced membrane permeability and eventual cell death. Therefore, nanoparticles (NPs) prepared with chitosan possess a positive surface charge and mucoadhesive properties that can adhere to microbial mucus membranes and release their drug load in a constant release manner. As the success in therapeutics depends on the targeted delivery of drugs, chitosan nanomaterial, which displays low toxicity, can be safely used for eradicating a biofilm through attenuating the quorum sensing (QS). Since the anti-biofilm potential of chitosan and its nano-derivatives are reported for various microorganisms, these can be used as attractive tools for combating chronic infections and for the preparation of functionalized nanomaterials for different medical devices, such as orthodontic appliances. This mini-review focuses on the mechanism of the downregulation of quorum sensing using functionalized chitosan nanomaterials and the future prospects of its applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8348235PMC
http://dx.doi.org/10.3390/polym13152533DOI Listing

Publication Analysis

Top Keywords

quorum sensing
16
functionalized chitosan
8
chitosan nanomaterials
8
drug resistance
8
chitosan
5
nanomaterials jammer
4
quorum
4
jammer quorum
4
sensing
4
sensing biggest
4

Similar Publications

Role of bacterial quorum sensing in plant growth promotion.

World J Microbiol Biotechnol

December 2024

Department of Microbiology, Government Science College, Vankal, Surat, 394 430, Gujarat, India.

Quorum sensing (QS) also known as bacterial cell-cell communication or bacterial crosstalk is a phenomenon regulating various bacterial traits that can affect plant growth and defence. Similarities in the structure of root exudates and bacterial signalling molecules have tremendous implications governing the plant heath. The rhizosphere ecosystem being an excellent example of plant-microbe and microbe-microbe interactions harbours a variety of microorganisms exhibiting quorum sensing.

View Article and Find Full Text PDF

Anaerobic ammonium oxidation (anammox) represents an energy-efficient process for the removal of biological nitrogen from ammonium-rich wastewater. However, the susceptibility of anammox bacteria to coexisting heavy metals considerably restricts their use in engineering practices. Here, we report that acyl-homoserine lactone (AHL), a signaling molecule that mediates quorum sensing (QS), significantly enhances the nitrogen removal rate by 24% under Cu stress.

View Article and Find Full Text PDF

Stubborn biofilm infections pose serious threats to public health. Clinical practices highly rely on mechanical debridement and antibiotics, which often fail and lead to persistent and recurrent infections. The main culprits are 1) persistent bacteria reviving, colonizing, and rejuvenating biofilms, and 2) secondary pathogen exposure, particularly in individuals with chronic diseases.

View Article and Find Full Text PDF

Introduction: The development of extended-spectrum-beta-lactamase (ESBLs) () has become a global threat to public health. An alternative strategy to alleviate this is identifying potential natural compounds to restore antibiotic activity against ESBLs . This study aimed to find a possible compound to restore ESBLs sensitivity to ceftiofur.

View Article and Find Full Text PDF

The current study aims to prepare a green extract using a new method in addition to conventional extraction methods including; methanolic and ultrasonic extraction of , to compare their phenolic composition utilizing high-performance liquid chromatograph equipped with a diode array detector (HPLC-DAD), anti-bacterial, anti-oxidant, and enzyme inhibition activities. The results of HPLC-DAD analysis showed that Rosmarinic acid was found the highest amount in the methanolic extract followed by ultrasonic and green extracts as 169.7 ± 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!