The generation of secondary processing mill residues from wood processing facilities is extensive in the United States. Wood flour can be manufactured utilizing these residues and an important application of wood flour is as a filler in the wood-plastic composites (WPCs). Scientific research on wood flour production from mill residues is limited. One of the greatest costs involved in the supply chain of WPCs manufacturing is the transportation cost. Wood flour, constrained by low bulk densities, is commonly transported by truck trailers without attaining allowable weight limits. Because of this, shipping costs often exceed the material costs, consequently increasing raw material costs for WPC manufacturers and the price of finished products. A bulk density study of wood flour (190-220 kg/m) and wood pellets (700-750 kg/m) shows that a tractor-trailer can carry more than three times the weight of pellets compared to flour. Thus, this study focuses on exploring the utilization of mill residues from four wood species in Maine to produce raw materials for manufacturing WPCs. Two types of raw materials for the manufacture of WPCs, i.e., wood flour and wood pellets, were produced and a study of their properties was performed. At the species level, red maple 40-mesh wood flour had the highest bulk density and lowest moisture content. Spruce-fir wood flour particles were the finest (d of 0.18 mm). For all species, the 18-40 wood flour mesh size possessed the highest aspect ratio. Similarly, on average, wood pellets manufactured from 40-mesh particles had a lower moisture content, higher bulk density, and better durability than the pellets from unsieved wood flour. Red maple pellets had the lowest moisture content (0.12%) and the highest bulk density (738 kg/m). The results concluded that the processing of residues into wood flour and then into pellets reduced the moisture content by 76.8% and increased the bulk density by 747%. These material property parameters are an important attempt to provide information that can facilitate the more cost-efficient transport of wood residue feedstocks over longer distances.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8348652 | PMC |
http://dx.doi.org/10.3390/polym13152487 | DOI Listing |
Materials (Basel)
November 2024
Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141 St., 02-507 Warsaw, Poland.
The increasing complexity and production volume of glass-fiber-reinforced polymers (GFRP) present significant recycling challenges. This paper explores a potential use for mechanically recycled GFRP by blending it with high-density polyethylene (HDPE). This composite could be applied in products such as terrace boards, pipes, or fence posts, or as a substitute filler for wood flour and chalk.
View Article and Find Full Text PDFMolecules
November 2024
Department of Chemistry and Technology of Polymers, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska Str. 24, 31-155 Kraków, Poland.
Along with the development of technology and the increasing consumption of polymeric materials, which have become an integral part of man's everyday life, problems related to their disposal are arising. The presented research concentrates on the studies on the enzymatic degradation of selected epoxy-polyurethane materials filled with 2 or 5 wt.% of waste unmodified or chemically modified through mercerization wood flour.
View Article and Find Full Text PDFMolecules
October 2024
School of Mechanical Engineering, Nanjing Vocational University of Industry Technology, Nanjing 210023, China.
Fused deposition molding (FDM) is a commonly used 3D printing method, and polylactic acid (PLA) has become one of the most important raw materials for this technology due to its excellent warping resistance. However, its mechanical properties are insufficient. Polybutylene adipate terephthalate (PBAT) is characterized by high toughness and low rigidity, which can complement the performance of PLA.
View Article and Find Full Text PDFMolecules
October 2024
Guangxi Key Laboratory of Advanced Microwave Manufacturing Technology, Guangxi Academy of Sciences, Nanning 530007, China.
A novel elastomer-modified multicomponent, multiphase waste-sourced biocomposites, was prepared for converting waste biomass and plastic into value-added products. The effects of blending elastomer-olefin block copolymer (OBC) and maleic anhydride (MAH), and divinylbenzene (DVB) co-grafting of recycled polypropylene (rPP) matrix on the adhesion interface, structure, and properties of high wood flour-filled (60 wt.%) composites were thoroughly investigated.
View Article and Find Full Text PDFPolymers (Basel)
October 2024
Technology Faculty Metallurgy and Materials Engineering, Marmara University, 34722 Istanbul, Turkey.
This study aims to develop a recyclable, economical, and flame-retardant composite material using polypropylene, beech flour, tetrabromobisphenol A bis (TBBPA), and antimony trioxide (ATO). Flame-retardant additives (TBBPA and ATO) were initially added into polypropylene at different rates, and masterbatch (MB) samples were produced by the extrusion method. Subsequently, different percentages of wood flour (10%, 15%, 20%, 25%, and 30%) along with 60% MB were added to the polypropylene to create wood-polymer composites (WPC) using the injection method.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!