Small-scale optical components with micron or submicron features have grown in popularity in recent years. High-quality, high-efficient, and cost-effective processing approaches for polymer optics mass production are an urgent need. In this study, ultrasonic vibration will be introduced in embossing. The major advantage is that the required energy can be provided for process times ranging from a few hundred milliseconds to a few seconds, and that the process energy is provided at exactly the required location so that the structures in the surrounding area are not affected. Due to the strong correlation between electrical impedance and the temperature of the material, a novel impedance-based control strategy has been utilized for precisely controlling ultrasonic vibration during the embossing process. The investigation used two types of stamps with grating line widths of 4 µm and 500 nm, respectively. As a result, an embossing time of less than a few seconds was accomplished and a uniform embossed surface with an average fill rate of more than 75% could be achieved.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8347105PMC
http://dx.doi.org/10.3390/polym13152417DOI Listing

Publication Analysis

Top Keywords

micron submicron
8
ultrasonic vibration
8
energy provided
8
experimental investigation
4
investigation rapid
4
rapid fabrication
4
fabrication micron
4
submicron structures
4
structures polymers
4
polymers utilizing
4

Similar Publications

Epipelagic community as prominent biosensor for sub-micron and nanoparticles uptake: Insights from field and laboratory experiments.

Environ Pollut

December 2024

Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy; NBFC, National Biodiversity Future Center, Piazza Marina 61, 9013, Palermo, Italy; Department of Life Sciences, University of Trieste, Via Licio Giorgieri, 34127, Trieste, Italy. Electronic address:

Nowadays, ENMs/NPLs particles have not yet been extensively measured in the environment, but there is increased concern that this size fraction may be more widely distributed and hazardous than larger-sized particles. This study aimed to examine the bioaccumulation potential of engineered nanomaterials and nanoplastics (ENMs/NPLs) across marine food webs, focusing on plankton communities and commercial fish species (Engraulis encrasicolus and Scomber colias) from the Gulf of Naples. Laboratory experiments on plankton assemblages exposed to fluorescent polystyrene nanoplastics (PS-NPs, 100 nm) for 24h at concentrations ranging from 0.

View Article and Find Full Text PDF

We developed a wideband RF cavity beam position monitor (CBPM) with a 217 MHz bandwidth centered at the 4.875 GHz dipole mode frequency as part of the preliminary research for a high-repetition-rate hard x-ray free electron laser project at the Chinese Academy of Engineering Physics. This paper presents new results demonstrating bunch-by-bunch position measurements on electron bunches spaced by 2.

View Article and Find Full Text PDF

One-pot synthesis of supported sub-micron LaNi for hydrogen storage in a carbazole-type liquid organic hydrogen carrier.

Chem Commun (Camb)

December 2024

Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.

Metal hydrides are promising catalysts in hydrogen-involving reactions. However, downsizing and loading metal hydrides is difficult due to their sensitivity towards oxygen and water. Here, a simple one-pot molten salt synthetical method is proposed to synthesize porous La(OH)-supported LaNi.

View Article and Find Full Text PDF

Photon avalanche (PA)-where the absorption of a single photon initiates a 'chain reaction' of additional absorption and energy transfer events within a material-is a highly nonlinear optical process that results in upconverted light emission with an exceptionally steep dependence on the illumination intensity. Over 40 years following the first demonstration of photon avalanche emission in lanthanide-doped bulk crystals, PA emission has been achieved in nanometer-scale colloidal particles. The scaling of PA to nanomaterials has resulted in significant and rapid advances, such as luminescence imaging beyond the diffraction limit of light, optical thermometry and force sensing with (sub)micron spatial resolution, and all-optical data storage and processing.

View Article and Find Full Text PDF

Piezoelectric micro-robots have gained considerable attention in rescue and medical applications due to their rapid response times and high positioning accuracy. In this paper, inspired by the human butterfly locomotion pattern, we propose a novel resonant four-legged piezoelectric micro-robot designed to achieve fast and efficient movement in complex and confined spaces. The robot utilizes the parallel piezoelectric bimorph as the driving unit, and its leg structure mimics the butterfly motion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!