Polymer foams are widely used in several fields such as thermal insulation, acoustics, automotive, and packaging. The most widely used polymer foams are made of polyurethane, polystyrene, and polyethylene but environmental awareness is boosting interest towards alternative bio-based materials. In this study, the suitability of bio-based thermoplastic cellulose palmitate for extrusion foaming was studied. Isobutane, carbon dioxide (CO), and nitrogen (N) were tested as blowing agents in different concentrations. Each of them enabled cellulose palmitate foam formation. Isobutane foams exhibited the lowest density with the largest average cell size and nitrogen foams indicated most uniform cell morphology. The effect of die temperature on foamability was further studied with isobutane (3 wt%) as a blowing agent. Die temperature had a relatively low impact on foam density and the differences were mainly encountered with regard to surface quality and cell size distribution. This study demonstrates that cellulose palmitate can be foamed but to produce foams with greater quality, the material homogeneity needs to be improved and researched further.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8347262 | PMC |
http://dx.doi.org/10.3390/polym13152416 | DOI Listing |
J Dairy Sci
December 2024
Centre for Microbiome Research, School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute, Woolloongabba, QLD, Australia; Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway; Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway.
Although cellulose has received the most attention, further research is needed for a complete comprehension of other fiber components in forage and nonforage fiber sources corresponding with the array of enzymes needed for depolymerization and resulting fermentation of sugars. The carbohydrate-active enzymes (CAZymes) have been described in detail herein, although new information will no doubt accumulate in the future. Known CAZymes are attributed to taxa that are easily detected via 16S rRNA gene profiling techniques, but such approaches have limitations.
View Article and Find Full Text PDFInt J Mol Sci
November 2024
Departamento de Física y Matemáticas, Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez 32320, Mexico.
Intravaginal drug administration offers several advantages over other routes, primarily bypassing the initial stages of metabolism. Additionally, this route has demonstrated both local and systemic effects. Mucoadhesive polymeric systems can be utilized to prevent dose loss due to the mucous barriers and the formation of wet cavities.
View Article and Find Full Text PDFAntioxidants (Basel)
October 2024
Department of Analytical Chemistry, Nutrition & Food Sciences, University of Alicante, San Vicente del Raspeig, 03690 Alicante, Spain.
Gels
November 2024
Department of Chemistry, La Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
The use of organic solvents, particularly those of a non-polar nature, is a common practice during cleaning operations in the restoration of polychrome artworks and metallic artifacts. However, these solvents pose significant risks to the health of operators and the environment. This study explores the formulation of innovative gels based on non-polar solvents and cellulose derivatives, proposing a safe and effective method for cleaning metallic artworks.
View Article and Find Full Text PDFBioprocess Biosyst Eng
January 2025
Department of Chemistry, Sapienza University of Rome, P.Le A. Moro 5, 00185, Rome, Italy.
For the first time is reported the comparison of solid biocatalysts derived from Candida rugosa lipase (CRL) immobilized on different lignocellulosic wastes (rice husk, brewer's spent grain, hemp tea waste, green tea waste, vine bark, and spent coffee grounds) focusing on the characterization of these materials and their impact on the lipase-support interaction. The wastes were subjected to meticulous characterization by ATR-FTIR, BET, and SEM analysis, besides lignin content and hydrophobicity determination. Investigating parameters influencing immobilization performance revealed the importance of morphology, textural properties, and hydrophobic interactions revealed the importance of morphology, textural properties and especially hydrophobic interactions which resulted in positive correlations between surface hydrophobicity and lipase immobilization efficiency.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!