Tomato cultivation in the greenhouse can be facilitated by supplemental light. We compared the combined effects of nutrients, water, and supplemental light (red) on tomato fruit quality. To do this, three different nutrient conditions were tested, i.e., (1) low N, (2) standard N, and (3) high N. Water was supplied either at -30 kPa (sufficient) or -80 kPa (limited) of soil water potential. Supplemental red LED light was turned either on or off. The metabolites from tomato fruits were profiled using non-targeted mass spectrometry (MS)-based metabolomic approaches. The lycopene content was highest in the condition of high N and limited water in the absence of supplemental light. In the absence of red lighting, the lycopene contents were greatly affected by nutrient and water conditions. Under the red lighting, the nutrient and water conditions did not play an important role in enhancing lycopene content. Lower N resulted in low amino acids. Low N was also likely to enhance some soluble carbohydrates. Interestingly, the combination of low N and red light led to a significant increase in sucrose, maltose, and flavonoids. In high N soil, red light increased a majority of amino acids, including aspartic acid and GABA, and sugars. However, it decreased most of the secondary metabolites such as phenylpropanoids, polyamines, and alkaloids. The water supply effect was minor. We demonstrated that different nutrient conditions of soil resulted in a difference in metabolic composition in tomato fruits and the effect of red light was variable depending on nutrient conditions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8309447 | PMC |
http://dx.doi.org/10.3390/plants10071437 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!