AI Article Synopsis

  • - The advancements in next-generation sequencing technology and bioinformatics have made it easier and cheaper to assemble DNA sequences, especially for shorter organelle genomes like chloroplasts.
  • - The increasing availability of complete chloroplast genome sequences in public databases is important for research in plant phylogenetics and biotechnology.
  • - This study focused on identifying and correcting inconsistencies in publicly available chloroplast genome data, demonstrating the impacts of these inconsistencies on phylogenetic analysis using five different plant families as examples.

Article Abstract

With the development of next-generation sequencing technology and bioinformatics tools, the process of assembling DNA sequences has become cheaper and easier, especially in the case of much shorter organelle genomes. The number of available DNA sequences of complete chloroplast genomes in public genetic databases is constantly increasing and the data are widely used in plant phylogenetic and biotechnological research. In this work, we investigated possible inconsistencies in the stored form of publicly available chloroplast genome sequence data. The impact of these inconsistencies on the results of the phylogenetic analysis was investigated and the bioinformatic solution to identify and correct inconsistencies was implemented. The whole procedure was demonstrated using five plant families (Apiaceae, Asteraceae, Campanulaceae, Lamiaceae and Rosaceae) as examples.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8309291PMC
http://dx.doi.org/10.3390/plants10071360DOI Listing

Publication Analysis

Top Keywords

dna sequences
12
well-tempered chloroplast
4
chloroplast dna
4
sequences development
4
development next-generation
4
next-generation sequencing
4
sequencing technology
4
technology bioinformatics
4
bioinformatics tools
4
tools process
4

Similar Publications

Age-related muscle wasting, sarcopenia is an extensive loss of muscle mass and strength with age and a major cause of disability and accidents in the elderly. Mechanisms purported to be involved in muscle ageing and sarcopenia are numerous but poorly understood, necessitating deeper study. Hence, we employed high-throughput RNA sequencing to survey the global changes in protein-coding gene expression occurring in skeletal muscle with age.

View Article and Find Full Text PDF

Analysis of key lncRNA related to Parkinson's disease based on gene co-expression weight networks.

Neurosciences (Riyadh)

January 2025

From the School of Clinical Medicine (Liang, Luo, Jia), Shandong Second Medical University, Weifang, from the Department of Neurology (Liang, Zhao, Lin, Li, Luo, Jia) , Beijing Shijingshan Hospital, Shijingshan Teaching Hospital of Capital Medical University, Beijing, and from the Department of Neurology (Li), Affiliated Hospital of Weifang Medical University, Weifang, China.

Objectives: To identify a key Long chain non-coding RNAs (lncRNAs) related to PD and provide a new perspective on the role of LncRNAs in Parkinson's disease (PD) pathophysiology.

Methods: Our study involved analyzing gene chips from the substantia nigra and white blood cells, both normal and PD-inclusive, in the Gene Expression Omnibus (GEO) database, utilizing a weighted gene co-expression network analysis (WGCNA). The technique of WGCNA facilitated the examination of differentially expressed genes (DEGs) in the substantia nigra and the white blood cells of individuals with PD.

View Article and Find Full Text PDF

Urorchis Ozaki, 1927 and Neoplagioporus Shimazu, 1990 (Digenea: Opecoelidae: Sphaerostomatinae) comprise species parasitic in freshwater fishes of eastern Asia, although the status of these genera is questionable. We revised these genera, primarily using evidence from a molecular phylogeny based on nuclear ribosomal DNA, including new sequences of four known and one new species. Urorchis was part of the clade of Neoplagioporus species, rendering the genus Neoplagioporus paraphyletic.

View Article and Find Full Text PDF

Mannheimia haemolytica is one of the most common causative agents of bovine respiratory disease (BRD); however, antibiotic resistance in this species is increasing, making treatment more difficult. Integrative-conjugative elements (ICE), a subset of mobile genetic elements (MGE), encoding up to 100 genes have been reported in Mannheimia haemolytica genomes to confer multidrug resistance, including resistance to antibiotics commonly used in the treatment of BRD. However, the presence of antibiotic resistance genes (ARGs) does not always agree with phenotypic resistance.

View Article and Find Full Text PDF

Background: African buffalo (Syncerus caffer) is a significant reservoir host for many zoonotic and parasitic infections in Africa. These include a range of viruses and pathogenic bacteria, such as tick-borne rickettsial organisms. Despite the considerations of mammalian blood as a sterile environment, blood microbiome sequencing could become crucial for agnostic biosurveillance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!